

ARIB STD-T104-36.465 V13.1.0

Evolved Universal Terrestrial Radio Access Network (E-UTRAN) and Wireless LAN (WLAN); Xw interface user plane protocol

(Release 13)

Refer to "Industrial Property Rights (IPR)" in the preface of ARIB STD-T104 for Related Industrial Property Rights. Refer to "Notice" in the preface of ARIB STD-T104 for Copyrights.

3GPP TS 36.465 V13.1.0 (2016-06)

Technical Specification

3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access Network (E-UTRAN) and Wireless LAN (WLAN); Xw interface user plane protocol (Release 13)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented. This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords LTE, radio, LAN

3GPP

Postal address

3GPP support office address

650 Route des Lucioles – Sophia Antipolis Valbonne – FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© 2016, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC). All rights reserved.

UMTSTM is a Trade Mark of ETSI registered for the benefit of its members 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners LTETM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM Association

Contents

Forew	vord	4
1	Scope	5
2	References	5
3 3.1 3.2	Definitions and abbreviations Definitions Abbreviations	5
4	General	
4.1	General aspects	6
5 5.1	Xw user plane protocol	6
5.2	Xw user plane protocol layer services	
5.3	Services expected from the Xw Transport Network Layer	
5.4 5.4.1	Elementary procedures	
5.4.1.1	Transfer of Downlink User Data	
5.4.1.2	1	
5.4.2	Downlink Data Delivery Status	
5.4.2.1		
5.4.2.2		
5.5	Elements for the Xw user plane protocol	
5.5.1	General	
5.5.2	Frame format for the Xw user plane protocol	10
5.5.2.1		
5.5.2.2		
5.5.3	Coding of information elements in frames	
5.5.3.1	-	
5.5.3.2	Spare	12
5.5.3.3	Xw-U Sequence Number	12
5.5.3.4	Lost Packet Report	12
5.5.3.5		
5.5.3.6	∂	
5.5.3.7	Desired buffer size for the E-RAB	12
5.5.3.8		
5.5.3.9	Number of lost Xw-U Sequence Number ranges reported	13
5.5.3.1	∂	
5.5.3.1	1 End of lost Xw-U Sequence Number range	13
5.5.3.1	2 Spare extension	13
5.5.4	Timers	13
Anne	x A (informative): Change history	14

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

4

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document specifies the Xw user plane protocol being used over the Xw interface for LTE/WLAN Aggregation (LWA).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] 3GPP TS 36.300: "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

LTE-WLAN Aggregation: Defined in TS 36.300 [2].

LWA bearer: Defined in TS 36.300 [2].

LWA PDU: in LTE-WLAN Aggregation, a PDU with DRB ID generated by LWAAP entity for transmission over WLAN.

WLAN Termination: Defined in TS 36.300 [2].

Xw: logical interface between eNB and WT.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

eNB	E-UTRAN Node
LWA	LTE-WLAN Aggregation
WT	WLAN Termination

5

4 General

4.1 General aspects

The Xw user plane (Xw UP) protocol is located in the User Plane of the Radio Network layer over the Xw interface.

The Xw UP protocol is used to convey control information related to the user data flow management of E-RABs. The WT flow control feedback may support indication of successful transmission towards a UE, or successful delivery to the UE, as defined in TS 36.300 [2].

Each Xw UP protocol instance is associated to one E-RAB only.

This version of the present document defines the Xw UP protocol in the context of LTE-WLAN Aggregation only, more specifically, only for Xw user data bearers setup for E-RABs configured with the LWA bearer option.

If configured, Xw UP protocol instances exist at the eNB and the WT between which the Xw user data bearers are setup.

In this version of the present document, Xw UP protocol data is conveyed by GTP-U protocol means, more specifically, by means of the "RAN Container" GTP-U extension header as defined in TS 29.281 [3].

5 Xw user plane protocol

5.1 General

The Xw UP protocol layer is using services of the transport network layer in order to allow flow control of user data packets transferred over the Xw interface.

5.2 Xw user plane protocol layer services

The following functions are provided by the Xw UP protocol:

- Provision of Xw UP specific sequence number information for user data transferred from the eNB to the WT for a specific E-RAB configured with the LWA bearer option;
- Information of successful transmission towards or in sequence delivery to the UE of LWAAP PDUs from WT for user data associated with a specific E-RAB configured with the LWA bearer option;
- Information of LWA PDUs that were not transferred towards or not delivered to the UE;
- Information of the currently desired buffer size at the WT for transmitting to the UE user data associated with a specific E-RAB configured with the LWA bearer option;
- Information of the currently minimum desired buffer size at the WT for transmitting to the UE user data associated with all E-RABs configured with the LWA bearer option.

5.3 Services expected from the Xw Transport Network Layer

The Xw user plane protocol layer expects the following services from the Transport Network Layer:

- Transfer of user data.

5.4 Elementary procedures

5.4.1 Transfer of Downlink User Data

5.4.1.1 Successful operation

The purpose of the Transfer of Downlink User Data procedure is to provide Xw-U specific sequence number information at the transfer of user data carrying a DL LWA PDU from the eNB to the WT via the Xw-U interface.

An Xw user plane instance making use of the Transfer of Downlink User Data procedure is associated to a single E-RAB only. The Transfer of Downlink User Data procedure is invoked whenever user data for that particular E-RAB needs to be sent across the Xw-U interface.

The eNB shall assign consecutive Xw-U sequence numbers to each transferred Xw-U packet.

The WT shall detect whether an Xw-U packet was lost and memorise the respective sequence number after it has declared the respective Xw-U packet as being "lost".

The WT shall transfer the remaining LWA PDUs towards the UE and memorise the highest Xw-U sequence number of the PDCP PDU that was successfully transferred towards or delivered to the UE.

NOTE: The Transfer of Downlink User Data procedure and the associated feedback of lost Xw-U packets assist the eNB in avoiding PDCP HFN de-synchronisation. If an E-UTRAN deployment decides to not use the Transfer of Downlink User Data procedure, PDCP HFN synchronization should be ensured by other means, e.g. UE feedback.

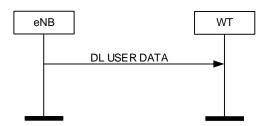


Figure 5.4.1.1-1: Successful Transfer of Downlink User Data

5.4.1.2 Unsuccessful operation

Void.

5.4.2 Downlink Data Delivery Status

5.4.2.1 Successful operation

The purpose of the Downlink Data Delivery Status procedure is to provide feedback from the WT to the eNB to allow the eNB to control the downlink user data flow via the WT for the respective E-RAB.

When the WT decides to trigger the Feedback for Downlink Data Delivery procedure it shall report:

- a) the highest Xw-U sequence number successfully transferred towards or delivered to the UE among those PDUs received from the eNB;
- b) the desired buffer size in bytes for the concerned E-RAB;
- c) the minimum desired buffer size in bytes for the UE;
- d) the Xw-U packets that were declared as being "lost" by the WT and have not yet been reported to the eNB within the DL DATA DELIVERY STATUS frame.

7

NOTE: If an E-UTRAN deployment has decided not to use the Transfer of Downlink User Data procedure, d) above is not applicable.

The DL DATA DELIVERY STATUS frame shall also include an indication whether the frame is the last DL status report received in the course of releasing a bearer from the WT. When receiving such indication, if applicable, the eNB considers that no more UL data is to be expected from the WT.

The eNB, when receiving the DL DATA DELIVERY STATUS frame:

- regards the desired buffer size under b) and c) above as the amount of data desired from the WT being declared;
 - from the Xw-U sequence number reported under a) above within the same frame, as well as from the most recently reported Xw-U sequence number(s) of all other E-RABs established for the UE;
 - as the momentary desired buffer sizes, independent of buffer sizes indicated in the past.
- is allowed to remove the buffered PDCP PDUs according to the feedback of successfully delivered PDCP PDUs;
- decides upon the actions necessary to take for PDCP PDUs reported other than successfully delivered.

After being reported to the eNB, the WT removes the respective Xw-U sequence numbers.

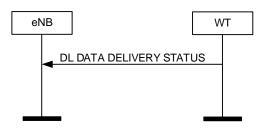


Figure 5.4.2.1-1: Successful Downlink Data Delivery Status

5.4.2.2 Unsuccessful operation

Void.

5.5 Elements for the Xw user plane protocol

5.5.1 General

In the present document the structure of frames are specified by using figures similar to figure 5.5.1-1.

		Number of Octets							
7	6	0	r of s						
	Fie	1	Octet 1						
		2	Octet 2						
Field 4 continue Spare									Octet 3
		2	Octet 4						
Field 6 continue Padding									Octet 5
		0-m							

Figure 5.5.1-1: Example frame format

Unless otherwise indicated, fields which consist of multiple bits within an octet have the most significant bit located at the higher bit position (indicated above frame in figure 5.5.1-1). In addition, if a field spans several octets, most significant bits are located in lower numbered octets (right of frame in figure 5.5.1-1).

On the Xw interface, the frame is transmitted starting from the lowest numbered octet. Within each octet, the bits are sent according to decreasing bit position (bit position 7 first).

Spare bits should be set to "0" by the sender and should not be checked by the receiver.

The header part of the frame is always an integer number of octets. The payload part is octet aligned (by adding 'Padding' when needed).

The receiver should be able to remove an additional spare extension field that may be present at the end of a frame. See description of Spare extension field.

9

5.5.2 Frame format for the Xw user plane protocol

5.5.2.1 DL USER DATA (PDU Type 0)

This frame format is defined to allow the WT to detect lost Xw-U packets and is associated with the transfer of a Downlink LWA PDU over the Xw-U interface.

The following shows the respective DL USER DATA frame.

	Bits									
7	6	5	4	3	2	1	0	Number of Octets		
	PDU Type (=0) spare									
	Xw-U Sequence Number									
	Spare extension									

Figure 5.5.2.1-1: DL USER DATA (PDU Type 0) Format

5.5.2.2 DL DATA DELIVERY STATUS (PDU Type 1)

This frame format is defined to transfer feedback to allow the receiving eNB to control the downlink user data flow via the WT.

	of O							
7	6	5	4	3	2	1	0	Number of Octets
	1							
	Highest	successfu	lly deliver	ed Xw-U S	Sequence	Number		3
		Desired	d buffer si	ze for the	E-RAB			4
	4							
Number of lost Xw-U Sequence Number ranges reported								1
	6* (Number of reported lost Xw-u SN ranges)							
	0-4							

Figure 5.5.2.2-1: DL DATA DELIVERY STATUS (PDU Type 1) Format

5.5.3 Coding of information elements in frames

5.5.3.1 PDU Type

Description: The PDU Type indicates the structure of the Xw UP frame. The field takes the value of the PDU Type it identifies; i.e. "0" for PDU Type 0. The PDU type is in bit 4 to bit 7 in the first octet of the frame.

Value range: {0=DL USER DATA, 1=DL DATA DELIVERY STATUS, 2-15=reserved for future PDU type extensions}

Field length: 4 bits

5.5.3.2 Spare

Description: The spare field is set to "0" by the sender and should not be interpreted by the receiver. This field is reserved for later versions.

Value range: $(0-2^n-1)$.

Field Length: n bits.

5.5.3.3 Xw-U Sequence Number

Description: This parameter indicates the Xw-U sequence number as assigned by the respective eNB.

Value range: {0..2²⁴-1}.

NOTE: There should be one-to-one mapping between PDCP SN and Xw-U SN.

Field length: 3 octets.

5.5.3.4 Lost Packet Report

Description: This parameter indicates the presence of a list of lost Xw-U packets in the respective Xw UP frame.

Value range: {0=Lost Frame List not present, 1=Lost Frame List present}.

Field length: 1 bit.

5.5.3.5 Final Frame Indication

Description: This parameter indicates whether the frame is the last DL status report as described in clause 5.4.2.1.

Value range: {0=Frame is not final, 1= Frame is final}.

Field length: 1 bit.

5.5.3.6 Highest successfully delivered Xw-U Sequence Number

Description: This parameter indicates feedback about the in-sequence delivery status of LWA PDUs at the WT towards, or to the UE.

Value range: {0..2²⁴-1}.

Field length: 3 octets.

5.5.3.7 Desired buffer size for the E-RAB

Description: This parameter indicates the desired buffer size for the concerned E-RAB as specified in clause 5.4.2.1.

Value range: $\{0..2^{32}-1\}.$

Field length: 4 octets.

5.5.3.8 Minimum desired buffer size for the UE

Description: This parameter indicates the minimum desired buffer size for all E-RABs established for the UE as specified in clause 5.4.2.1.

Value range: $\{0..2^{32}-1\}.$

Field length: 4 octets.

5.5.3.9 Number of lost Xw-U Sequence Number ranges reported

Description: This parameter indicates the number of Xw-U Sequence Number ranges reported to be lost.

Value range: {1..256}.

Field length: 1 octet.

5.5.3.10 Start of lost Xw-U Sequence Number range

Description: This parameter indicates the start of an Xw-U sequence number range.

Value range: $\{0..2^{18}-1\}$.

Field length: 3 octets.

5.5.3.11 End of lost Xw-U Sequence Number range

Description: This parameter indicates the end of an Xw-U sequence number range.

Value range: $\{0..2^{18}-1\}$.

Field length: 3 octets.

5.5.3.12 Spare extension

Description: The spare extension field shall not be sent. The receiver should be capable of receiving a spare extension. The spare extension should not be interpreted by the receiver, since in later versions of the present document additional new fields might be added in place of the spare extension. The spare extension can be an integer number of octets carrying new fields or additional information; the maximum length of the spare extension field (m) depends on the PDU type.

Value range: $0-2^{m^{*8}}-1$.

Field Length: 0-m octets. For the PDU Types defined in the present document m=4.

5.5.4 Timers

Not applicable.

Annex A (informative): Change history

	Change history									
Date	TSG #	TSG Doc.	CR	Rev	Cat	Subject/Comment	New			
2015-08	RAN3#89	R3-151597				Draft skeleton TR	0.0.1			
2015-09	RAN3#89 0bis	R3-152214				TR number update	0.0.2			
2015-11	RAN3#90	R3-152420				TR number update	0.1.0			
2015-11	RAN3#90	R3-152907				Agreements from RAN3#90	0.2.0			
2016-01	RAN3#A H	R3-160007				TR number update	1.1.0			
2016-02	RAN3#A H	R3-160150				Agreements from RAN3#AH	1.2.0			
2016-02	RAN3#91	R3-160158				TR number update	1.3.0			
2016-02	RAN#91	R3-160546				Agreements from RAN3#91	1.5.0			
2016-03	71	RP-160437				MCC cleanup and submission for approval	2.0.0			
2016-03	71					Upgraded to Rel-13 and placed under change control	13.0.0			
2016-06	72	RP-161046	1	1	F	TS 36.465 correction for LWA	13.1.0			
2016-06	72	RP-161046	3	2	F	Correction to the description of the Xw UP protocol services and Xw-U Sequence Number	13.1.0			
2016-06	72	RP-161046	4	1	F	Correction to the range of the Xw-U Sequence Number	13.1.0			