ENGLISH TRANSLATION

Data Coding and Transmission Specification

for Digital Broadcasting

ARIB STANDARD

ARIB STD-B24 Version 6.2

Fascicle 1

Established Oct. 26, 1999 Version 1.0
Revised Mar.29, $2000 \quad$ Version 1.1
Revised Jun. 20, 2000
Revised Mar. 27, 2001
Revised May 31, 2001
Revised Jul. 27, 2001
Revised Nov. 15, 2001
Revised Mar. 28, 2002
Revised Jul. 25, 2002
Revised Nov. 27, 2002
Revised Feb. 6, 2003
Revised Jun. 5, 2003
Revised Jul. 29, 2003
Revised Oct. 16, 2003
Revised Feb. 5, 2004
Revised Dec. 14, 2004
Revised Mar. 24, 2005
Revised Sep. 29, 2005
Revised Mar. 14, 2006
Revised May 29, 2006
Revised Mar. 14, 2007
Revised Jun. 6, 2008

Version 1.2
Version 2.0
Version 3.0
Version 3.1
Version 3.2
Version 3.3
Version 3.4
Version 3.5
Version 3.6
Version 3.7
Version 3.8
Version 3.9
Version 4.0
Version 4.1
Version 4.2
Version 4.3
Version 4.4
Version 5.0
Version 5.1
Version 5.2

Revised Jul. 29, 2009 Version 5.3
Revised Dec. 16, 2009 Version 5.4
Revised Dec. 6, 2011 Version 5.5
Revised Sep. 25, 2012 Version 5.6
Revised Mar. 19, 2013 Version 5.7
Revised Jul. 3, $2013 \quad$ Version 5.8
Revised Mar. 18, 2014 Version 5.9
Revised Jul. 31, 2014 Version 6.0
Revised Dec. 16, 2014 Version 6.1
Revised Dec. 3, 2015 Version 6.2

General Notes to the English Translation of ARIB Standards and Technical Reports

1. Notes on Copyright

- The copyright of this document is ascribed to the Association of Radio Industries and Businesses (ARIB).
- All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, without the prior written permission of ARIB.

2. Notes on English Translation

- ARIB Standards and Technical Reports are usually written in Japanese. This document is a translation into English of the original document for the purpose of convenience of users. If there are any discrepancies in the content, expressions, etc. between the original document and this translated document, the original document shall prevail.
- ARIB Standards and Technical Reports, in the original language, are made publicly available through web posting. The original document of this translation may have been further revised and therefore users are encouraged to check the latest version at an appropriate page under the following URL:
http://www.arib.or.jp/english/index.html.

Foreword

The Association of Radio Industries and Businesses (ARIB) investigates and summarizes the basic technical requirements for various radio systems in the form of "ARIB Standards". These standards are developed with the participation of and through discussions amongst radio equipment manufacturers, telecommunication operators, broadcasting equipment manufacturers, broadcasters and users.

ARIB Standards include "government technical regulations" (mandatory standard) that are set for the purpose of encouraging effective use of frequency and preventing interference with other spectrum users, and "private technical standards" (voluntary standards) that are defined in order to ensure compatibility and adequate quality of radio equipment and broadcasting equipment as well as to offer greater convenience to radio equipment manufacturers, telecommunication operators, broadcasting equipment manufacturers, broadcasters and users.

This ARIB Standard is developed for "Data Coding and Transmission Specification for Digital Broadcasting". In order to ensure fairness and transparency in the defining stage, the standard was set by consensus at the ARIB Standard Assembly with the participation of both domestic and foreign interested parties from radio equipment manufacturers, telecommunication operators, broadcasting equipment manufacturers, broadcasters and users.

ARIB sincerely hopes that this ARIB Standard will be widely used by radio equipment manufacturers, telecommunication operators, broadcasting equipment manufacturers, broadcasters and users.

NOTE:
Although this ARIB Standard contains no specific reference to any Essential Industrial Property Rights relating thereto, the holders of such Essential Industrial Property Rights state to the effect that the rights listed in the Attachment 1 and 2, which are the Industrial Property Rights relating to this standard, are held by the parties also listed therein, and that to the users of this standard, in the case of Attachment 1, such holders shall not assert any rights and shall unconditionally grant a license to practice such Industrial Property Rights contained therein, and in the case of Attachment 2, the holders shall grant, under reasonable terms and conditions, a non-exclusive and non-discriminatory license to practice the Industrial Property Rights contained therein. However, this does not apply to anyone who uses this ARIB Standard and also owns and lays claim to any other Essential Industrial Property Rights of which is covered in whole or part in the contents of the provisions of this ARIB Standard.
（Selection of Option 2）

Patent applicant	Name of invention	Patent number	Remarks
Matsushita Electric Industrial Co．， Ltd．	情報処理装置	特開平 04－205415号	JP
	データサーバ装置及び端末装置	特開平 06－139173号	JP
	放送を用いて対話性を実現する送信装置，受信装置，受信方法，その受信プ ログラムを記録した媒体，通信システ ム	特開平10－070712号	JP，US，G B，FR，DE， KR，CN
	データ入出力端末装置	特開平10－074134号	JP
	情報処理装置	特開平10－083270号	JP
	データの提示を制御するデータ提示制御装置，データの提示を～情報を送信するデー タ送信装置及びデータ～デー夕提示制御情報編集装置	特開平10－164530号	JP，US，G B，FR，DE， KR，CN，T W，MY，IN
	デジタル放送システム，デジタル放送装置及び デジタル放送における受信装置	特開平 10－304325号	
	デジタル放送装置，受信装置，デジタル放送システム，受信装置に適用するプログラム記録媒体	特開平 10－313449号	
	番組編集装置および番組受信装置	特願平 10－020585号	JP，US，G B，FR，DE，
	放送局システム及び受信機	特願平 10－195093号	JP，US，G B，FR，DE， AU，SG，K R，CN，T W
	デジタル放送のための記録再生装置およ び方法	特願平11－367308号	JP
	データ送受信システムおよびその方法	特願平 11－103619号	JP
	デジタルデータ送受信システムおよびその方法	特願平11－124986号	JP，US，G B，FR，DE， IT，KR，C N，IN
	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver3．8＊5		
TOSHIBA CORPORATION	多重放送システムとこのシステムで使用される放送送信装置および放送受信装置	特開平 09－162821号	JP

ARIB STD－B24
Version 6．2－E1

Patent applicant	Name of invention	Patent number	Remarks
	デジタル放送装置及びデジタル放送方法， デジタル放送受信装置及びデジタル放送受信方法，デジタル放送受信システム＊16	特許第3621682号	JP
NHK （Japan Broadcasting Corporation）	文書情報出力装置および方法	特開平 9－244617号	JP
	入力データの自動選択処理装置	特開平11－328189号	JP
	マルチメディア型情報サービス方式およびその方式の実施に使用する装置	特開平11－331104号	JP
Sony Corporation	音声信号圧縮方法及びメモリ書き込み方法＊1	特許第1952835号	JP
	オーディオ信号処理方法＊1	特許第 3200886号	JP，US，G B，DE，FR， AT，AU，K R，HK
	オーディオ信号処理方法＊1	特許第 3141853 号	
	信号符号化又は複合化装置，及び信号符号化又は複合化方法，並びに記録媒体＊1	WO94／28633	JP，US，G B，DE，FR， NL，AT，I T，ES，CA， AU，KR，C N
	信号符号化方法及び装置，信号複合化方法及び装置，並びに記録媒体＊1	特開平 7－168593	JP，US，G B，DE，FR， KR，TW，C N，MY，ID ，IN，TH， MX，TR
	符号化音声信号の複合化方法＊1	特開平8－63197	JP，US，G B，DE，FR
	音声信号の再生方法，再生装置及び伝送方法＊1	特開平 9－6397	JP，US，G B，DE，FR， NL，AT，I T，ES，CA， SU，AU，K R，TW，C N，SG，MY ，ID，IN，T H，VN，BR ，MX，TR
	音声信号の再生方法及び装置，並びに音声複合化方法及び装置，並びに音声合成方法及び装置，並びに携帯無線端末装置＊1	特開平 9－190196	JP，US，G B，DE，FR， NL，KR，T W，CN，S G，TH
	音声符号化方法，音声複合化方法及び音声符号化複合化方法＊1	特開平8－69299	JP，US

Patent applicant	Name of invention	Patent number	Remarks
	符号化データ複合化方法及び符号化デ一夕複合化装置＊ 1	特許 2874745 号	JP，US，G B，DE，FR KR，HK
	映像信号符号化方法＊1	特許 2877225 号	
	符号化データ編集方法及び符号化デー夕編集装置＊${ }^{(1)}$	特許2969782号	
	動画像データエンコード方法及び装置，並びに動画像データデコード方法 および装置＊1	特許2977104号	JP，US
	動きベクトル伝送方法及びその装置並 びに動きベクトル複合化方法及びその装置＊1	特許 2712645 号	JP，US，G B，DE，FR， AU，CA，K R
	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver3．0＊1		
	情報処理装置，情報処理方法，プログ ラム，アプリケーション情報テーブル供給装置およびアプリケーション情報 テーブル供給方法＊ 18	PCT／JP2012／00752 7	PCT
	受信装置，受信方法，放送装置，放送方法，プログラム，および連動アプリ ケーション制御システム＊ 18	$\begin{aligned} & \text { 特願 } \\ & 2012-207207 \end{aligned}$	JP
	受信装置，受信方法，送信装置，送信方法，及びプログラム＊18	$\begin{aligned} & \text { 特願 } \\ & 2012-108135 \end{aligned}$	JP
	受信装置，受信方法，放送装置，放送方法，プログラム，および連動アプリ ケーション制御システム＊ 18	$\begin{aligned} & \text { 特願 } \\ & 2012-095498 \end{aligned}$	JP
	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver5．9＊19		
	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver6．0＊20		
Mitsubishi Electric Corporation	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver3．1＊2		
	マルチメディア多重方式＊3	特許第3027815号	JP
	マルチメディア多重方式＊3	特許第 3027816号	JP
	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver4．4＊15		

Version 6．2－E1

Patent applicant	Name of invention	Patent number	Remarks
Motorola Japan Ltd．	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver3．6＊4		
	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver3．8＊5		
	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver3．9＊6		
	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver4．0＊7		
	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver4．1＊9		
NTT DoCoMo， Inc．	動画像符号化方法，動画像複合方法，動画像符号化装置，及び動画像複合装置＊11	特許第3504256号	JP，EPC， US，KR， CN，TW
	動画像符号化方法，動画像複合方法，動画像符号化装置，動画像複合装置，動画像符号化プログラム，及び動画像複合プログラム＊11	特許第3513148号	JP，EPC， US，KR， CN，TW
	動画像複合方法，動画像複合装置，及 び動画像複合プログラム＊11	特許第 3534742号	JP，EPC， US，KR，C N，TW
	信号符号化方法，信号複合方法，信号符号化装置，信号複合装置，信号符号化プログラム，及び，信号複合プログ ラム＊11	特許第3491001号	JP，EPC， US，KR，C N，TW
	インターリーブを行うための方法およ び装置並びにデ・インターリーブを行 らための方法および装置＊13	特許第3362051号	$\begin{array}{\|l} \text { JP,US,K } \\ \text { R,SG,AU } \\ \text {,CN } \end{array}$
	誤り保護方法および誤り保護装置＊${ }^{\text {＊}}$ 13	特許第 3457335号	JP，US，G B，KR，GE ，FR，IT，S G，AU，CN
	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver3．8＊5		
	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver4．4＊15		
Sharp Corporation＊5	画像符号化装置および画像復号装置	特許第2951861号	JP
NEC Corporation	画像信号の動き補償フレーム間予測符号化•複合化方法とその装置＊5	特許第1890887号	JP

Version 6．2－E1

Patent applicant	Name of invention	Patent number	Remarks
	圧縮記録画像の再生方式＊5	特許第2119938号	JP，US，G B，GE，FR， NL，CA
	圧縮記録画像の対話型再生方式＊5	特許第 2134585 号	
	適応変換符号化の方法及び装置＊5	特許第 2778128 号	JP，US，G B，DE，FR
	符号化方式および復号方式＊5	特許第 2820096 号	JP，US，G B，DE，FR， NL，IT，S E，CA，AU ，KR
	変換符号化複合化方法及び装置＊5	特許第3070057号	JP
	改良DCTの順変換計算装置および逆変換計算装置＊5	特許第3185214号	$\begin{aligned} & \text { JP,US,G } \\ & \text { B,DE,FR, } \\ & \text { NL,CA } \end{aligned}$
	適応変換符号化方式および適応変換複合方式＊5	特許第3255022号	JP，US，G B，DE，FR， NL，IT，S E，CA，AU ，KR
	放送通信融合端末及びコンテンツ配信 システム＊21	特許第3832321号	
	デジタル放送受信機＊22	特許第4051968号	
	テレビ受信機むよびテレビアプリケー ション制御方法＊22	特許第4045805号	
Philips Japan， Ltd	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver4．0＊8		
	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver4．1＊10		
	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver4．2＊12		
Philips Electronics Japan，Ltd．	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver4．3＊14		
QUALCOMM Incorporated	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver5．5＊17		
	Submitted comprehensive confirmation of patents applied to the revised parts of ARIB STD－B24 Ver5．7＊ 18		

Note）$\quad *_{1}: \quad$ valid for the revised parts of ARIB STD－B24 Ver3．0
＊2：\quad valid for the revised parts of ARIB STD－B24 Ver3．1
＊3：\quad valid for the revised parts of ARIB STD－B24 Ver3．3
＊4：\quad valid for the revised parts of ARIB STD－B24 Ver3．6
＊5：\quad valid for the revised parts of ARIB STD－B24 Ver3．8
＊6：valid for the revised parts of ARIB STD－B24 Ver3．9（accepted on October 9，2003）
*7: valid for the revised parts of ARIB STD-B24 Ver4.0 (accepted on January 8,2004)
*8: \quad valid for the revised parts of ARIB STD-B24 Ver4.0 (accepted on January 29,2004)
*9: \quad valid for the revised parts of ARIB STD-B24 Ver4.1 (accepted on November 17,2004)
*10: valid for the revised parts of ARIB STD-B24 Ver4.1 (accepted on December 7,2004)
*11: valid for the revised parts of ARIB STD-B24 Ver3.8 (accepted on January 7,2005)
*12: valid for the revised parts of ARIB STD-B24 Ver4.2 (accepted on March 14,2005)
*13: valid for the ARIB STD-B24 Ver1.0 (accepted on September 26,2005)
*14: valid for the revised parts of ARIB STD-B24 Ver4.3 (accepted on September 27,2005)
*15: valid for the revised parts of ARIB STD-B24 Ver4.4 (accepted on March 6,2006)
*16: valid for the revised parts of ARIB STD-B24 Ver3.6 (accepted on March 14,2006)
*17: valid for the revised parts of ARIB STD-B24 Ver5.5 (accepted on November 29,2011)
*18: valid for the revised parts of ARIB STD-B24 Ver5.7 (accepted on March 12,2013)
*19: valid for the revised parts of ARIB STD-B24 Ver5.9 (accepted on March 11,2014)
*20: valid for the revised parts of ARIB STD-B24 Ver6.0 (accepted on July 24,2014)
*21: valid for the revised parts of ARIB STD-B24 Ver6.1 (accepted on February 3,2015)
*22: valid for the revised parts of ARIB STD-B24 Ver6.1 (accepted on April 22,2015)

Contents

Foreword

Volume 1 Data Coding

Part 1 Reference Model for Data Broadcasting
Part 2 Monomedia Coding
Part 3 Coding of Caption and Superimpose

Volume 2 XML-based Multimedia Coding Scheme

Appendix 1 Operational Guidelines
Appendix 2 Operational Guidelines for Implementing Basic Services
Appendix 3 Operational Guidelines for Implementing Extended Services for Fixed Receiving System

Appendix 4 Operational Guidelines for Implementing Extended Services for Portable Receiving System

Appendix 5 Operational Guidelines for Implementing Extended Services for Mobile Receiving System

Appendix 6 Operational Guidelines for Service Implementation in Terrestrial Multimedia Broadcasting of ISDB-Tmm System

Volume 3 Data Transmission Specification
Volume 4 Application Control Specification

VOLUME 1

Data Coding

Part 1 Reference Model for Data Broadcasting
 Contents

Chapter 1 Purpose 1
Chapter 2 Scope 2
Chapter 3 Definitions and Abbreviations 3
3.1 Definitions 3
3.2 Abbreviations 3
Chapter 4 System 4
Chapter 5 Protocol 5
Chapter 6 Receiver 6
6.1 Receiving and storing function 6
6.2 Presentation function 6
6.3 Decoding process and display 7
Chapter 7 Presentation process 8
7.1 Logical coordinate 8
7.1.1 Logical coordinate and display coordinate in square pixel format 8
7.1.2 Logical coordinate and display coordinate in non-square pixel format 12
7.2 Colorimetry 12
7.3 Composition between planes 13
Informative explanation 15
1 Requirements of data broadcasting and outline of the services 15
1.1 Requirements of data broadcasting for digital broadcasting 15
1.2 Data service for digital broadcasting 17
2. Example of receiver construction 19
References 21

Chapter 1 Purpose

This standard specifies a reference model enabling data broadcasting, which is carried out as part of the digital broadcasting that is specified as Japanese standard specification.

Chapter 2 Scope

This standard is applied to reference model of data broadcasting service that is carried out as part of the digital broadcasting.

Chapter 3 Definitions and Abbreviations

3.1 Definitions

a blending:	Mixing composition of pictures by α value.
Carousel transmission	
specification:	Repeated transmission specification such as data carousel.
Colorimetry:	Specification for colour reproduction
Colour index:	Index value for directing colour information Colour map data: Data set in CLUT
CLUT:	Table to convert index value to physical value of the colour information. CLUT conversion: Conversion of colour information by CLUT
Data carousel:	Transmission specification to send various data by broadcasting repeatedly. (Specified in part 3)
Data stream:	PES based data transmission format. Used for data associated with video or audio service or data requiring real time transmission
Display coordinate:	Coordinate system when displaying on TV monitor.
Logical coordinate:	Logical coordinate system of model of receiver with decoder of presentation process. It exists for each plane of video plane, still picture plane, character figure plane, subtitle plane, video and still picture- switching plane
Monomedia:	Individual media for presentation source E.g. video, audio, character, and still picture, etc.
Palette:	Table to convert index value to physical value of the colour information (synonymous with CLUT).
PES packet:	Data format used to transmit elementary stream and consists of packet header and PES packet payload following to it.
Plane:	Display screen to display mono-media
Reference model:	Model to refer to as standard related to system, protocol, receiver, and presentation process etc., in data broadcast coding and transmission formats.
Section:	Syntax structure used for mapping data for data carousel or service information to TS packet.
Subtitle:	Of all superimpose onto the TV broadcast video, the service of overlaying words over video which is associated with the video
Superimpose:	Subtitling service not synchronizing with main video, audio or data. E.g. news flash, program remarks, time signal, etc.
Packet of fixed length 188 bytes specified in ISO/IEC 13818-1.	

3.2 Abbreviations

CLUT: Colour Look Up Table
PES: Packetized Elementary Stream
TS: Transport Stream

Chapter 4 System

For data broadcasting service offered through digital broadcasting, some interfaces from transmission to reception should be specified. For the viewer to receive transmitted data and provided with service exactly as designed by transmission operator, specification of the receiver is also necessary. In this chapter, the reference model of the whole system related to data broadcasting offered through digital broadcasting is specified. System to implement data broadcasting service in digital broadcasting is shown in Figure 4-1.

Figure 4-1 System structure

Detailed specification is made as follows for each interface from (1) to (5) in Figure 4-1.
(1) Coding of mono-media

Coding system for character string and bit map etc. used in multimedia is specified in Volume 1 part 2 of this standard.
(2) Coding of subtitle, superimpose

Coding system of subtitle and superimpose is specified in Volume 1 part 3 of this standard.
(3) Multimedia coding

Coding system of XML system adopted as multimedia coding system and its profile is specified in Volume 2 of this standard.
(4) Content transmission format

Content transmission format of data carousel transmission method etc. to transmit content is specified in Volume 3 of this standard.
(5) Subtitle and superimpose transmission format

Independent PES transmission format to transmit subtitle and superimpose is specified in Volume 1 part 3 of this standard.

Chapter 5 Protocol

In this system, video, audio and all data on service are multiplexed on broadcasting radio wave for transmission in packetized transport stream (TS) specified in MPEG-2 Systems (ITU-T H.222.0, ISO/IEC 13818-1). Interactive channel telecommunication is provided through interactive channel network such as fixed network or portable network. Protocol stack is shown in Figure 5-1.

Figure 5-1 Protocol stack

Following three types of data transmission system are shown in Figure 5-1. The item [3] described below will be specified when it becomes necessary as expanded specification.
[1] Data transmission system by storing in PES packet as stream
This system is mainly used for real time type service and used basically for data which needs time control in decoding and reproducing such as video, audio or subtitle, or data which should be synchronous with other stream. This is specified as data stream.
[2] Data transmission system using section
This system is mainly used for storage type service. Data transmitted repeatedly is once downloaded to the receiver. This is specified as data carousel.
[3] Data is directly stored in payload of TS packet

Chapter 6 Receiver

Basic functions of receivers are specified to receive multimedia service by the greater part of the receivers. The receiver, which can receive multimedia service, should have functions to receive/display/store /communicate with the data broadcasting service in addition to basic functions to view normal TV program. With such functions, various multimedia services can be made available.

6.1 Receiving and storing function

It is desired that multimedia type service carried out by the digital broadcasting can employ low priced receivers for storage of broadcasting service. To carry out these services, the specifications for storage devices and storage capacity to receive and store the services are required.

There are two types in storage-based service. One is made available only by storing data transmitted by data broadcasting and another is by storing both data broadcasting and normal video broadcasting. For video storing, secondary storage device is mandatory such as hard disk or tape and for data broadcasting, it may be made available by primary storage device such as flash memory, when some restriction is set to data broadcasting capacity.

During normal viewing, function to receive data in background mode is necessary in some cases and as it is closely related to receiving function, it should be specified.

For receiving and storing functions of the receiver considering above points, refer to "Informative explanation 2: Example of receiver architecture ".

6.2 Presentation function

To reproduce the multimedia service sent from the broadcaster on screen just as the producer intended through the receiver, display and playback function on the receiver should be specified. Therefore, specification related to presentation function is necessary as a basic requirement of the receiver. Presentation function is designed based on the logic structure of display screen composed of video plane, still picture plane, text and graphic plane, subtitle plane, and control plane switching and controlling video and still picture.

Desirable logic structure of display screen for multimedia service by data broadcasting is shown in Figure 6-1.

Figure 6-1 Logical structure of screen display

6.3 Decoding process and display

Model structure of decoding function in receiver is indicated in Figure 6-2, showing how data is processed.

Figure 6-2 Model decoder in receiver showed with data processing flow

As shown in Figure 6-2, process in the receiver can be divided in following three steps.
(1) Transmission data decoding process

Mono-media such as character figure, still picture, video, and audio are transmitted in data stream or data carousel. Those data are decoded and divided to be coded into monomedia data individually.
(2) Mono-media decoding process

Coded monomedia data is decoded by an appropriate decoder. Generally, video or audio are decoded by exclusive hardware decoder, but there may be the case where they are decoded by software decoding function such as still picture, etc.
(3) Presentation process

Text, graphic, still picture, and video are displayed by text graphic plane, still picture plane and video plane respectively and composed by switching control plane. Scaling may be adopted when displayed in each plane.
In multimedia service, these monomedia presentation control is made in the specified frame by the multimedia coding. For superimpose, presentation control is made by subtitle and superimpose coding specification.

Chapter 7 Presentation process

Presentation process model is specified in this chapter.

7.1 Logical coordinate

Five planes of video, still picture, text and graphic, subtitle, and video and still picture switching are specified as logical rectangular coordinates system.

7.1.1 Logical coordinate and display coordinate in square pixel format

Bit number and colour format indicating horizontal and vertical logical coordinate value and pixel of five logic planes in square pixel format is shown in Table 7-1.

Table 7-1 Planes in square pixel format

Plane	Specification scope
Video plane	$1920 \times 1080 \times 16 \mathrm{Y}, \mathrm{CB}, \mathrm{CR} \mathrm{(4:2:2)} \mathrm{each} \mathrm{8} \mathrm{bit}$
Still picture plane	$1920 \times 1080 \times 16 \mathrm{Y}, \mathrm{CB}, \mathrm{CR} \mathrm{(4:2:2)} \mathrm{each} \mathrm{8} \mathrm{bit}$
Video and still picture switching plane	$1920 \times 1080 \times 1 \quad 1$ bit switching control
Text and graphic plane	$1920 \times 1080 \times 24 \mathrm{Y}, \mathrm{CB}, \mathrm{CR} \mathrm{(4:4:4)} \mathrm{each} 8$ bit α blending in 256 steps
Subtitle plane	$1920 \times 1080 \times 88$ bit colour map address α blending in 256 steps

As these planes are specified as logical rectangular coordinates, mapping should be made to physical display plane when displayed on the receiver unit. As shown in figure 7-1, logical coordinate is horizontal direction (Xs, Xe) and vertical direction (Ys, Ye) and mapping to display coordinate system is horizontal direction $(\mathrm{Xs} / \mathrm{N}, \mathrm{Xe} / \mathrm{N})$ and vertical direction $(\mathrm{Ys} / \mathrm{N}, \mathrm{Ye} / \mathrm{N})$, where N is 1, 1.5 and 2.

Figure 7-1 Mapping for logical coordination system

In case of square pixel format, value of N should be $1,1.5,2$. When N is 1 , mapping is made in $1: 1$ and mapping is made on the display coordinate of 1920×1080. When N is 1.5 , mapping is made on the display coordinate of 1280×720. When N is 2 , mapping is made on the display coordinate of 960 $\times 540$.

7.1.1.1 Logical coordinate of video plane and still picture plane

Logical coordinate of video plane in case of square pixel is shown in Figure 7-2. It is defined as logical rectangular coordinates of horizontal direction $(0,1919)$ and vertical direction $(0,1979)$. Colorimetry is displayed by the 4:2:2 format of Y, CB, CR specified in Rec. ITU-R BT709 (BT 1361). Therefore, coordinate specification is made in $2 * \mathrm{n}$ unit. (However, n should be integer of 0 or more)

Figure 7-2 Logical coordinate system of video plane and still picture plane
Coordination system of still picture plane should be the same as video plane.

7.1.1.2 Text and graphic plane

Logical coordinate of text and graphic plane is shown in Figure 7-3. It is specified as Y, CB, CR 4:4:4 format. Also α value which sets mixing ration of each pixel is added.

Figure 7-3 Logical coordinate system of text and graphic plane

7.1.1.3 Subtitle plane

Subtitle plane is specified by colour map address of each 8-bit pixel. It is transformed to Y, CB, CR 4:4:4 format by CLUT (colour lookup table). Transformation by CLUT and coordinating system is shown in Figure 7-4. α value which set mixing ratio is output at the same time. α value is specified by 8 bit which can be mapped. There is no regulation of display start position.

Figure 7-4 Logical coordinate system of subtitle plane

7.1.1.4 Video and still picture switching plane

As both video plane and still picture plane is Y, CB, CR 4:2:2 format, coordinate system is the same, but as switching control is in 2-pixel unit, information is decreased to half in horizontal direction, as shown in Figure 7-5.

Figure 7-5 Logical coordinate of video, still picture switching plane

Composing control between video plane and still picture plane is shown in Figure 7-6. Pixel of video plane and still picture plane is switched in 1-bit value of video and still picture switching plane.

Figure 7-6 Switching control of video and still picture plane
Figures can be written on still picture plane. However, as still picture plane does not have blending function, video and still picture switching plane bit corresponding to the pixel set which α value is not 0 , should be set when writing a figure which α value is designated, to the still picture plane. Writing can be made when pixel of video and still picture switching control plane is CP, by the following formula.
$C P=\left\{\begin{array}{l}1: \text { when } \alpha \text { value is not } 0 \\ 0: \text { when } \alpha \text { value is } 0\end{array}\right.$

7.1.2 Logical coordinate and display coordinate in non-square pixel format

Five planes of video, still picture, text and graphic, sub-title and video and still picture switching are specified as logical rectangular coordinates system.

Horizontal and vertical logic coordinate value, bit number indicating pixel and colour format of five logical planes in non-square pixel is indicated in Table 7-2.

Table 7-2 Planes in non-square pixel format

| Plane | Specification scope |
| :--- | :--- | :--- |
| Video plane | $720 \times 480 \times 16 \quad$ Y, CB, CR (4:2:2) each 8-bit |
| Still picture plane | $720 \times 480 \times 16 \quad$ Y, CB, CR (4:2:2) each 8-bit |
| Video and still picture switching plane | $720 \times 480 \times 1 \quad$ 1-bit switching control |
| Text and graphic plane | $720 \times 480 \times 24 \quad$ Y, CB, CR (4:4:4) each 8-bit
 α blending in 256 steps |
| Subtitle plane | $720 \times 480 \times 8 \quad 8$-bit colour map address
 α blending in 256 steps |

As these planes are specified as logical rectangular coordinates, it should be mapped to physical display plane when displayed on the receiver unit. Mapping process is shown in figure 7-7.

When logical coordinate system is horizontal direction (Xs, Xe) and vertical direction (Ys, Ye), mapping to display coordinate system is horizontal direction $(\mathrm{Xs} / \mathrm{N}, \mathrm{Xe} / \mathrm{N})$ and vertical direction ($\mathrm{Ys} / \mathrm{M}, \mathrm{Ye} / \mathrm{M}$), where values of N and M should be as follows.

Figure 7-7 Mapping of logical coordinate system

In case of displaying picture of 720×480 on $16: 9$ screen, $N=16 \times 480 / 9 \times 720, M=1$ and in this case, pixel of width become 1.18518 times of height. In case of displaying on $4: 3$ screen, $N=4 \times 480 / 3 \times$ $720, \mathrm{M}=1$ and in this case, pixel of width become 0.888889 times the height.

7.2 Colorimetry

Y, CB, CR should be 8-bit each. Y is allocated with 220 level, and black level is 16 , and white peak level is 235 . For CB, CR, 225 level is allocated, and signal should be in the range of 16 to 240 and $0-$ signal level should be 128. Specification for colorimetry should be in accordance with Rec. ITU-R BT 709 (BT. 1361) "Worldwide Unified colorimetry and Related Characteristics of Future Television and Imaging Systems".

Transform from 8-bit signals of $\mathrm{R}, \mathrm{G}, \mathrm{B}$ in the same range with Y to $\mathrm{Y}, \mathrm{CB}, \mathrm{CR}$ should be made according to the following formula.

$$
\left.\left(\begin{array}{c}
Y \\
C B \\
C R
\end{array}\right)=\text { Round }\left\{\begin{array}{lll}
0.2126 & 0.7152 & 0.0722 \\
-(0.2126 / 1.8556)^{*}(224 / 219) & -(0.7152 / 1.8556)^{*}(224 / 219) & 0.5^{*}(224 / 219) \\
0.5^{*}(224 / 219) & -(0.7152 / 1.5748)^{*}(224 / 219) & -(0.0722 / 1.5748)^{*}(224 / 219)
\end{array}\right)\left(\begin{array}{l}
R \\
G \\
B
\end{array}\right)\right\}+\left(\begin{array}{l}
0 \\
128 \\
128
\end{array}\right)
$$

Transform from R, G, B signal with level scope of 0 to 255 of black level 0 and peak level 255 to Y, CB, CR should be made by the following formula.

$$
\left.\left(\begin{array}{l}
\mathrm{Y} \\
\mathrm{CB} \\
\mathrm{CR}
\end{array}\right)=\text { Round }\left\{\begin{array}{lll}
0.2126^{*}(219 / 255) & 0.7152^{*}(219 / 255) & 0.0722^{*}(219 / 255) \\
-(0.2126 / 1.8556)^{*}(224 / 255)-(0.7152 / 1.8556)^{*}(224 / 255) & 0.5^{*}(224 / 255) \\
0.5^{*}(224 / 255) & -(0.7152 / 1.5748)^{*}(224 / 255) & -(0.0722 / 1.5748)^{*}(224 / 255)
\end{array}\right)\left(\begin{array}{l}
R \\
G \\
B
\end{array}\right)\right\}+\left(\begin{array}{l}
16 \\
128 \\
128
\end{array}\right)
$$

Transform of $(Y, C B, C R)$ and (R, G, B) in this case is restricted so that value which cannot be figured within the above range is not designated.

7.3 Composition between planes

Function of composition control between planes is indicated in Table 7-3.
Table 7-3 Composition control function between planes

Planes	Specification range
Between video and still picture plane and other plane	Switching in 2-pixel unit
Between text and graphic plane and other plane	α blending in pixel unit $1 / 256$ steps
Between subtitle plane and other plane	α blending in pixel unit $1 / 256$ steps

Composition control between planes is shown in Figure 7-8. Pixel of still picture plane (SP) and pixel of video plane (VP) is switched by 1-bit value of video and still picture switching plane (CP). Therefore, pixel of composition plane (SVP) of video plane and still picture plane should be in accordance with following formula.

$$
\mathrm{SVP}=\left\{\begin{array}{l}
\mathrm{SP}: \text { when } \mathrm{CP}=1 \\
\mathrm{VP}: \text { when } \mathrm{CP}=0
\end{array}\right.
$$

Pixel of composed plane of video and still picture is composed again by α value output by text and graphic plane pixel TP and CLUT. When the α value is $\alpha 1$, pixel of composed plane (TSVP) is calculated by the following formula.

$$
\mathrm{TSVP}=(1-\alpha 1) * \mathrm{SVP}+\alpha 1 * \mathrm{TP}
$$

Pixel of subtitle plane (GP) is composed further by α value output by subtitle plane CLUT. When the α value is $\alpha 2$, composed plane pixel GTSVP is calculated by the following formula.

GTSVP $=(1-\alpha 2) *$ TSVP $+\alpha 2 *$ GP

Figure 7-8 Composition control between planes
Here, α value indicates opaque degree and when α value is 255 , it is 100% and when $0,0 \%$. When the value is 100%, foreground screen is completely displayed and when 0%, background is completely displayed.

Colour map data stored in CLUT used in subtitle plane can be downloaded and specified as part of character coding and multimedia coding. Function of CLUT is indicated in Table 7-4.

Table 7-4 Specification scope of I/O

	Specification scope
Input/output	Input address 8-bit, output data 8×4 bit, $\mathrm{Y}, \mathrm{CB}, \mathrm{CR}, \alpha$ output

Pallet output of subtitle plane is shown in Figure 7-9.
Mapping of α value can be made in receiver unit side. When α value when deciding mixing ratio using transmitted 8 -bit α value is α max and when α value after mapping is α map, mapping is made in the receiver unit side by the following formula.
α map $=\alpha \max / 2^{* *} \mathrm{~N}$, where N is integer of positive number.

Figure 7-9 Pallet output

Informative explanation

1 Requirements of data broadcasting and outline of the services

In the digital broadcasting, technical conditions of television service including high definition television and audio broadcasting service were reported from the Telecommunications Technology Council of Ministry of Posts and Telecommunications (MPT) in Japan in February 1998. Standardized specification is provided based on this report, and the study of the ARIB specification considering operation verification is now progressing. On the other hand, data broadcasting which enables various services combining data such as text, graphics, video, still pictures, audio and control information shall be considered to have various needs and development according to further engineering progress, so that flexibility and extendibility for coding system should be fully considered. In the case adopting different coding system in each service and contents provider, it shall not preferable for viewer's usage or price on the receiver by means of lacking of inter-operability.

The advanced data broadcasting system working-group (hereafter referred to as advanced data WG) has started studying data broadcasting specification for the purpose of standardizing since July 1997. Regarding to the data services, it shall be assumed multimedia services, which integrate subtitles and superimposes layered television screen and video, audio and data. Multimedia services mean the service by use of media, which enables to view integrated multiple presentation media interactively utilizing digitizing features. Requirement conditions for advanced data broadcasting service, multimedia services including subtitle and superimpose, and outlines of necessary display functions are discussed in this chapter.

1.1 Requirements of data broadcasting for digital broadcasting

Requirements of advanced data broadcasting are as follows.
(1) Overall system

Service	Service contents	- Enable to display of subtitles or superimpose overlapped on HDTV and SDTV. - Enable to view HDTV, SDTV and audio services or independent multimedia information. Multimedia information means the information which enables to view integrated multiple media such as text, still pictures, video and audio, etc. interactively. - Consider possibilities of service not only other broadcast service but also combination with various services such as communication field and package services, etc. - Consider interactive services utilizing communication system such as public telephone networks, etc. - Consider service corresponding to various viewers such as aged persons or handicapped persons.
Accessibility	- Enable to add EPG, index and automatic recording function etc. for easier program selection. - Enable to do access controls variously by viewer's operations. - Consider the time range for smooth program switching not to be a hindrance to viewer's actual operations.	
	Extensibility	- Consider extensibilities of service styles, coding specification, conditional access system and receivers. - Consider possibilities to correspond the new service in the future.

Inter-operability	- Enable receiving by the ordinary receiver, similar to existing HDTV or SDTV broadcasting. - Broadcasting media such as broadcasting station satellite broadcasting, terrestrial broadcasting, and CATV should be able to use commonly as far as possible. -Consider coordination of communication system and package media as far as possible. - Use of common receiver for various broadcasting media, communication system and package media should be considered as far as possible. Control ability of system - Consider flexible system control by using transmission capacity effectively, by transmission control of HDTV, SDTV and audio in the digital broadcasting. - Consider control function for appropriate copyright protection. - Consider automatic reception control functions such as emergency broadcast.
Display timing	- In service related to HDTV, SDTV and audio services, timing error of displaying subtitle, superimpose and multimedia information should be operated within the range so that viewers would not feel that something is wrong.

(2) Broadcasting quality

Display quality	- Display quality of data services should be able to produce programs with good balance with display quality of picture and sound of HDTV, SDTV and audio services.
Characteristics at transmission difficulties	- Consider quality balance of picture, sound and data in transmission trouble by rain attenuation, etc. - In case of temporary disconnection due to transmission trouble, consider possibilities of countermeasures not to display of error information as far as possible.
- In case of transmission trouble, consider duration from temporary	
disconnection of reception to returning to normal reception as short	
as possible.	

(3) Technical specification

General technical specification	Data coding	- Consider coordination with existing data coding - Consider future extensions. - Consider possibilities of software downloading and data interface for securing extendibility.
	Data multiplexing specification	- Enable multiplexing for various and flexible service. - Consider multiplexing service by multiple service providers. - Consider realizing good transmission characteristics and efficient multiplexing.
	Data conditional access system	- Enable conditional access system for flexible operation on service contents and service style. - Enable suitable secret security and safety on service contents and service style - Consider securing independent operations by multiple service providers.
Subtitle, superimpose coding		- Enable realizing program production, which comes up to intention of program producer. - Standardized multimedia type service of digital broadcasting should be maintained as far as possible to coordinate with existing

	broadcast service. - International standardization should be considered by referring international standards.
Multimedia service coding	- Enable realizing program production, which comes up to intention of program producer.
	- On the condition of displaying the multimedia information such as
	HDTV, SDTV, audio services, or independent multimedia
information, it should enable to realize multimedia-displaying	
	function such as displaying or linking presentation object for the
	specific duration on the specified position.
	- Consider the development to various services such as storage-based
	and interactive type service.
	- Consider the standardization among digital broadcastings and other
	media such as communications and packages.
	International standardization should be considered by referring
international standards.	

(4) Receiver

Operability	- Operation method of basic function is unified and easy operation can be made. - Setting of advanced operation should be enabled according to the requests of users or service providers. - Selection of service should be considered so that it can be made by unified operation. - Operation setting appropriate for aged persons or handicapped persons should be also considered.
Inter-operability	- Enables to realize adapters to receive this new service by connecting to existing broadcasting receiver. - Consider the inter-operability between broadcasting media such as satellite broadcasting, terrestrial broadcasting and CATV. - Coordination with communication system and package media should be considered as far as possible.
Realization	- Inexpensive receiver as consumer products having function and characteristics appropriate for service contents should be realized. - Realization of various terminals (mono-function, advanced function etc.) should be considered.
Extendibility	- Consider the extension corresponding to new service in the future. - Consider the possibility to connect to multiple devices.

1.2 Data service for digital broadcasting

Regarding to the data service for digital broadcasting, existing broadcasting service and data service which is studied to make are investigated, and outline of advanced data broadcasting services are settled as shown in Table 1, in addition to technical elements.

Table 1 Outline of advanced data broadcasting service

Classific ation		Example of service	Example of contents	Function	Necessary mono-media						Display timing				
							$\begin{array}{\|l} \hline \frac{\rightharpoonup}{2} \\ \frac{0}{0} \end{array}$					-7 \vdots 0 0 0 0 0 0 0 0 \vdots			
			EPG	Program table Program guide	Program selection, program scheduling, category search	O	O	O	O	O		O	O	O	O
		Index	Program title Category of each item	Program selection Item selection	O				O		O	O		O	
		Subtitle	For hearing handicapped person For foreigner	Outline subtitle Multi-lingual display	O							O	O	O	
		Commentary audio	For visually handicapped person	Commentary audio				O				O	O	O	
		Program supplemental information	Cast, outline, program, product information, jacket, and news from the station, etc.	Additional information of the program, detail information of the program	O	O	O	O	O		O	O	O	O	
		Multi-view television	Multi-view TV	Display and control of program using plural camera angle			O	O	O			O		O	
		Participation program	Shopping, questionnaires, etc.	Access from the viewers to the program	O	O	O	O	O	O	O	O	O	O	
		Independent information	News, weather forecast, traffic information, market information, disaster, election, etc.	Information service selectable anytime to view	O	O	O	O	O		O		O	O	
		Inquiry	Inquiries	Corresponding to access from the viewers	O				O	O	O			O	
		Software distribution	PC software, data, game software, program downloading	Application software distribution					O	O	O			O	
	Automatic reception		Emergency information	Automatic power on, automatic reception											
	Mail function		Individual mail, sending information for the whole user	Individual information	O				O						
	Download		IRD (Integrated Receiver Decoder) bug fix Version up	Decoding software downloading					O					O	
	Data distribution		Various data	Data downloading											

When the above services are received, data is stored in the receiver memory and displayed interactively according to the viewer's operation. It shall be realized the function such as automatic revision recording, scheduled recording, digest playback, chasing playback and zapping playback, etc. of television program by use of storing function of video and audio. Furthermore, it should be enables to record programs on different channels, to acquire data in advance by use of multiple tuner units.

2. Example of receiver construction

Reference model of the receiver is constructed of receiving function, storing function, telecommunication function and presentation function. For the specification of receiver to receive multimedia services, it should be specified the following functions through the operation at least.
(1) Receiving and storing function

Table 2 Receiving and storing function

Function	Class A	Class B
Receiving function	Simultaneous TS decode number: 1	Simultaneous TS decode number: 2 or more Decoded number is specified in the operational standard.
Storing function	Primary memory (semiconductor memory) Minimum capacity is specified in the operational standard.	Primary memory + Secondary memory Minimum capacity is specified in the operational standard.

(2) Telecommunication function

As only outline is denoted here, specification should be made otherwise.
(3) Presentation function

Table 3 Presentation function

Function	Level A	Level B
Presentation function	Indicated as assumed function example	Indicated as specification range

Examples of the receiver constructed by the above combination are shown here.
Figure 1 shows an example of the receiver constructed in the condition of presentation function level A, and receiving/storing function class A. Example of this receiver is rather inexpensive, and it should be set up restriction to view the storage-based broadcasting. That is, storing operations for different TS is only possible when the user is not viewing the program. Due to this restriction, the receiver may have only one tuner and TS decoder. For the receiver with class A, data storage can be made to RAM etc, for small capacity data broadcasting.

Figure 1 Construction example of the receiver with class A and presentation function level A

Figure 2 shows an example of the receiver constructed in the condition of presentation function level A, and receiving/storing function class B. For operating multimedia service by storing large amount of capacity, it should be necessary to equip two systems of tuner and TS decoder so that another reception for storage may be made during programs viewing.

Figure 2 Construction example of the receiver with class B and presentation function level A

References

(1) ISO/IEC 13818-1 (2000) "Information Technology - Generic Coding of Moving Pictures and Associated Audio: SYSTEMS Recommendation H.220.0"
(2) ITU-R BT709 (BT.1361) "Worldwide Unified Colorimetry and Related Characteristics of Future Television and Imaging Systems"
(3) Telecommunication Technology Council of Ministry of Posts and Telecommunications (MPT) in Japan "Technical Requirements for Satellite Digital Broadcasting Using Radio Wave Over 11.7GHz and Below 12.2GHz" of Submission No. 74 (Feb.1998)"Technical Requirements for Digital Broadcasting Systems"

Part 2 Monomedia Coding Contents

Chapter 1 Purpose 23
Chapter 2 Scope 24
Chapter 3 Definitions and Abbreviations 25
3.1 Definitions 25
3.2 Abbreviations 25
Chapter 4 Video coding 26
4.1 MPEG-1 Video 26
4.2 MPEG-2 Video 26
4.3 MPEG-4 Visual 26
4.4 H.264|MPEG-4 AVC 27
Chapter 5 Still picture and Graphics coding. 28
5.1 MPEG-I picture 28
5.1.1 MPEG-2 I frame 28
5.1.2 MPEG-4 I-VOP 29
5.1.3 H.264|MPEG-4 AVC I-picture 29
5.2 JPEG 29
5.3 PNG 29
5.3.1 Constraints of PNG 29
5.4 MNG 29
5.4.1 Constraints of MNG 29
5.4.2 Available chunk 30
5.5 GIF 31
Chapter 6 Audio coding 32
6.1 MPEG-2 Audio 32
6.2 PCM (AIFF-C) 32
6.3 MPEG-4 audio 32
6.4 Coding of synthesized sound. 32
Chapter 7 Character coding 33
7.1 JIS 8bit character code (8bit-character code) 33
7.1.1 Types and structure of character sets. 33
7.1.2 Coding of control function 34
7.2 Universal multi-octet coded Character Set. 101
7.2.1 Classes and coding structure of character code set 101
7.2.2 Coding of control code 112
7.2.3 Character encoding scheme 112
7.3 Shift-JIS Character Codes 113
Chapter 8 Coding of graphics display command 114
8.1 Geometric 114
8.1.1 Code set of graphics by geometric graphics display 114
8.1.2 Coding of graphics display command code set 114
8.1.3 Geometric macrocode set 119
8.1.4 Coding of control function 120
Annex A Operation of video scaling 129
A. 1 When multimedia coding is not used together with video 129
A. 2 When multimedia coding is used together with video 129
Annex B PNG coding 130
B. 1 File format of PNG 130
B. 2 Structure of chunk 130
Annex C Operation guideline related to audio coding 133
C. 1 Reference audio level 133
C. 2 Mix process at receiver unit 133
C.2.1 Recommended operation in the receiver unit 133
C.2.2 Operation in broadcasting station side 133
Annex D Coding of DRCS pattern data 134
Annex E Conversion from 8bit-Code, EUC-JP, and Shift JIS to UCS and Handling of Additional Characters and DRCS in UCS 136
E.1. General Rules for Coding Conversion 136
E.2. Conversion from Shift JIS to UCS 136
E.3. Conversion from EUC-JP to UCS 136
E.4. Conversion from 8 bit-Code to UCS 136
E.5. DRCS 137
Annex F Operation guideline related for MPEG-4 video coding 138
F. 1 Video coding 138
Informative explanation 141
1 Coding of MPEG-4 and scope 141
2 Extension part in 8bit-character code 142
2.1 Extension in C 1 control set 142
2.2 Extension for CSI (newly definition) 142
3 Extension part of geometric 143
3.1 Additional definition of new command 143
3.2 Modification of relation between drawing point and drawing position 143
References 144

Chapter 1 Purpose

This standard is specifies mono-media coding related to data broadcasting, which is carried out as part of digital broadcasting that is specified as Japanese standard.

Chapter 2 Scope

This standard is applied to mono-media coding of data broadcasting carried out as part of digital broadcasting.

Chapter 3 Definitions and Abbreviations

3.1 Definitions

Following definitions apply in this standard.
Component: Element constructing the program such as video, audio, and each data. In digital broadcasting multiplex system, it is a unit for multiplex and transmission with one PID given.
Chunk: Name of structure of a section of PNG coded or MNG coded data.
Geometric: Function to express figure by combining graphic description command directing dots, lines and arcs.

I frame: Video frame constructed of coding data completed within the frame. (Intra Frame)

Monomedia: Independent expression media such as video, still picture, graphic, sound and text. Monomedia is presentation media that can be presented only by own data without referring to other media.
Synthesized sound:Presentation media for music playback using electronic sound etc.

3.2 Abbreviations

Following abbreviations are used in this standard.

AAC	Advanced Audio Coding
AIFF	Audio Interchange File Format
BC	Backward Compatible
DAVIC	Digital Audio Visual Council
DRCS	Dynamically Re-definable Character Set
DTS	Decoding Time Stamp
ISO	International Organization for Standardization
IEC	International Electrotechnical Commission
ITU	International Telecommunication Union
JIS	Japanese Industrial Standard
JPEG	Joint Photographic Coding Experts Group
LC	Low Complexity
MNG	Multiple-image Network Graphics
PCM	Pulse Code Modulation
PES	Packetized Elementary Stream
PNG	Portable Network Graphics
PTS	Presentation Time Stamp
W3C	World Wide Web Consortium
UCS	Universal multi-octet coded Character Set

Chapter 4 Video coding

4.1 MPEG-1 Video

ISO/IEC 11172-2 shall be used for MPEG-1 Video coding with constraints specified in Table 4-1.
Table 4-1 Constraints of MPEG-1 coding parameter

Constraints of Sequence Header			Other parameter	
vertical_size	horizontal_size	pel_aspect_ratio		
240	352	6,12	4	Constrained parameters
120	176			

Meaning of each code number of MPEG-1 coding parameters in Table 4-1	
pel_aspect_ratio	$6=16: 9$ display (525 lines), $12=4: 3$ display (525 lines)
picture_rate	$4=30 / 1.001 \mathrm{~Hz}$,

4.2 MPEG-2 Video

MPEG-2 Video encoding uses a scheme defined in STD-B32 Section 5.1.1 and Section 5.2.1.

4.3 MPEG-4 Visual

ISO/IEC 14496-2 shall be used for MPEG-4 Video.
The encoding condition shall bein accordance with simple and core profile.
Table4-2 shows constraints of coding parameters. The other parameters which are not shown in table $4-3$, such as the number of objects and buffer size, shall be compliant with the specification of ISO/IEC 1496-2:1999/Amd.1:2000.

Table 4-2 Constraints of MPEG-4 coding parameter

parameter	Constraints
Picture format	$\mathrm{YC}_{\mathrm{B}} \mathrm{C}_{\mathrm{R}} 4: 2: 0$
Input pixel depth	8 bit
Scanning method	Progressive scan
Maximum size of picture	Specified in Table 4-4
Maximum frame rate	$30000 / 1001 \mathrm{~Hz}$
Time interval of VOP (Video Object Plane)	Within 0.7seconds
Colour description	Rec. ITU-R BT.1361 (Rec. ITU-R BT.709)

Table 4-3 Maximum picture size and bit rate

Profile	Level	Maximum picture size Horizontal pixels x vertical lines	Maximum bit rate (specified by ISO/IEC $14496-2$)
	Level 1	176×144	64 kbps
	Level 2	352×288	128 kbps
	Level 3	352×288	384 kbps
Core	Level 1	176×144	384 kbps
	Level 2	352×288	2 Mbps

4.4 H.264|MPEG-4 AVC

H.264|MPEG-4 AVC Video encoding uses a scheme defined in STD-B32 Section 5.1.2.

In the case of low resolution is used a method defined in STD-B32 section 5.2.2.

Chapter 5 Still picture and Graphics coding

5.1 MPEG-I picture

5.1.1 MPEG-2 I frame

ISO/IEC 13818-2 shall be used for MPEG-2 I frame with constraints specified in Table 5-1.
One frame of I picture between sequence_header_code and sequence_end_code shall be coded as onestill picture.

Table 5-1 Constraints of MPEG-2 still picture coding parameter

Constraints of sequence header				Constraints of sequence extension		Constraints of sequence display extension (Note 5)			Other parameter (Note 6)
vertical size_value	horizontal size_value	$\begin{array}{\|c\|} \hline \text { aspect_ } \\ \text { ratio_ } \\ \text { information } \end{array}$	frame- rate_code (Note 2)	progressive sequence	$\begin{aligned} & \text { low_ }_{\text {delay }}^{\text {del }} \end{aligned}$	$\underset{\text { primaries }}{\text { color }}$	transfer characteristics	matrix coefficients	
$\begin{gathered} 1080 \\ \text { (Note 1) } \end{gathered}$	1440, 1920	3	4	$\begin{gathered} 0 \\ \text { (Note 3) } \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} 1 \\ \text { (Note 4) } \end{gathered}\right.$	1	1	1	Value specified for MP@HL
720	1280	3	7	1					Value specified for MP@H14L
480	720	3	7	1					Value specified for MP@H14L
		2, 3	4	$\begin{gathered} 0 \\ \text { (Note 3) } \\ \hline \end{gathered}$					Value specified for MP@ML
240	352	2, 3	4	1					Value specified for MP@LL
$\begin{gathered} 1080 \text { or } \\ \text { less } \end{gathered}$	$\begin{gathered} 1920 \text { or } \\ \text { less } \end{gathered}$	1	4	1					Value specified for MP@HL

Note 1: In MPEG-2 coding (ITU-T H.262), 1088 lines are coded actually. Eight lines of fictional video data (dummy data) are added under the valid lines using at the encoder and coding process is made as video data of 1088 lines actually. Video signals with 1080 lines of valid line excluding dummy data, which are 1080 lines from the top of the 1088 lines of video data, shall be output from the decoder.
Note 2: Timing of decoding and display is controlled by the time stamp value in PES header and value of vbv_delay shall be 0xFFFF.
Note 3:When Sequence_end_code is available at the decoder, the receiver should hold the last presented image.In that case, if progressive_frame $=0$ (with timing difference due to interlaced scanningof 2 fields in the frame), the field image should be presented, otherwise progressive_frame $=1$ (2 fields in the frame is the same timing), the frame image shpuld be presented.
Note 4: When low_delay $=1$, time stamps of decoding and presentation are the same value ($D T S=$ PTS). For I (intra) frame of the still picture, only PTS should be sent out.
Note 5: When sequence_display_extension is not transmitted, each value of color_primaries, transfer_characteristics, matrix_coefficients are processed as is the same with " 1 ".
Note 6: Values of vbv_buffer_size_value, etc., adopt values specified for each level of main profile of ISO/IEC 13818-2. Value of bit_rate_value should be the maximum value of each level; i.e. MP@LL is 4 Mbps , MP@ML is 15 Mbps , and MP@H14L and MP@HL should be the maximum transmittable capacity.

Meaning of each code number of MPEG-2 coding parameter in Table 5-1		
aspect_ ratio_information	$1=$ square pixel, $2=4: 3,3=16: 9$	
fram_rate_code	$4=30 / 1.001 \mathrm{~Hz}, 7=60 / 1.001 \mathrm{~Hz}$	
progressive_sequence	$0=$ Interlaced scan, $1=$ Progressive scan	
low_delay	$1=$ B Picture is not included.	
color_primaries	$1=$ Rec.ITU-R BT.709(BT.1361)	
transfer_characteristics	$1=$ Rec.ITU-R BT.709(BT.1361)	
matrix_coefficients	$1=$ Rec.ITU-R BT.709(BT.1361)	

5.1.2 MPEG-4 I-VOP

ISO/IEC 14496-2 shall be used for MPEG-4 I-VOP with constraints of MPEG-4 Video coding specifications written in section 4.3 .
One frame of I-VOPbetween visual_object_sequence_start_code and visual_object_sequence_end_ code should be coded as still picture.

5.1.3 H.264|MPEG-4 AVC I-picture

ITU-T Rec. H.264|ISO/IEC 14496-10 shall be used for H.264|MPEG-4 AVC I-picture with constraints of H.264|MPEG-4 AVC Video coding specifications written in section 4.4.

5.2 JPEG

ISO/IEC 10918-1 shall be used for JPEG encoding of bit map.

5.3 PNG

, W3C Recommendation (PNG specification Ver 1.0 W3C Rec. Oct. 1996) shall be used for PNG (Portable Network Graphics) file format of graphics. Detail of coding format is specified in appendix specification B.

5.3.1 Constraints of PNG

Operation of PNG should be in accordance with the following specification.

- When colour type is "3" (palette index), PLTE chunk in the PNG data is omitted. In this case, CLUT should be presented in the multimedia contents and the receiver should not refer PLTE chunk but should refer the outside CLUT.

5.4 MNG

The specification based on MNG Format Version 0.96-19990718 shall be used for file format of animation graphics by MNG (Multiple-image Network Graphics).

5.4.1 Constraints of MNG

Operation of MNG should be in accordance with the following specification.

- Plural PNG pictures are included in MNG file and should be presented sequently.
- Object only with Object ID = 0 can be used.
- Only following frame rewriting constraints shall be enabled

1) frame mode of the previous frame shall be used (framing mode $=0$)
2) PNG picture is overwritten one by one in every 1 frame cycle (framing mode $=1$)
3) After erasing background with transparent colour, PNG picture is displayed in every 1 frame cycle (framing mode $=3$)

- For animation repeating process, only following two methods should be enabled.

1) The last PNG picture should be presented continuously. (default)
2) All of the pictures starting from the first picture in the file should be repeated for the specified times.(termination action $=3$)

5.4.2 Available chunk

Available chunk is specified in this clause and when value of each field is restricted, constraints are also specified.

5.4.2.1 MHDR

There is always one MHDR in the head. Field is fixed in 28 byte.

Field Name	BYTE NUMBER	Meaning	Constrain
Frame width	4	Frame width	
Frame height	4	Frame height	
Ticks per second	4	Unit time between frame	Other than 0
Nominal layer count	4	Number of layers	Fixed to 0
Nominal frame count	4	Number of frames	Fixed to 0
Nominal play time	4	Playing time	Fixed to 0
Simplicity profile	4	Profile information of the file	Fixed to 0

5.4.2.2 MEND

There is always one MEND at the end. There is no field.

5.4.2.3 IHDR, PNG chunks, IEND

IHDR, PNG chunks, IEND should be same as PNG picture specified in clause 5.3.

5.4.2.4 TERM

TERM can be omitted. In case when it exists, there is only one immediately after the MHDR chunk. Field is fixed to 10 bytes. When TERM chunk is omitted, the last PNG picture at the end of file is continued to be presented.

Field	BYTE NUMBER	Meaning	Constrain
Termination action	1	Specification of repeating process	Fixed to 3
Action after iterations	1	Action after repeating process	Fixed to 0
Delay	4	Delay time after repeating start	Fixed to 0
Iteration max	4	Repeating time	

5.4.2.5 FRAM

Plural FRAM can be existed. Field should be fixed to 1 byte or fixed to 10 bytes.

Field	BYTE NUMBER	Meaning	Constrain
Framing mode	1	Frame rewriting mode directed	Restricted either of 0, 1,3

Following fields can be omitted.

Subframe name, Separator	1	Frame name	Fixed to 0
Change interframe Delay	1	Time changing flag between frames	Fixed to 2
Change sync timeout and termination	1	Timeout value changing flag	Fixed to 0
Change subframe Clipping boundaries	1	Clip value changing flag	Fixed to 0
Change sync id list	1	Sync id changing flag	Fixed to 0
Interframe delay	4	Time between frames	

5.4.2.6 DEFI

Plural DEFI can be existed. Display position of following PNG picture should be settled. Field should be 12 bytes fix.

Field	BYTE NUMBER	Meaning	Constrain
Object id	2	Object ID	Fixed to 0
Do not show flag	1	Object non-display flag	Fixed to 0
Concrete flag	1	Object attribute flag	Fixed to 0
X location	4	X coordinate of the object	
Y location	4	Y coordinate of the object	

5.5 GIF

Any graphics file in GIF (Graphics Interchange Format) must be coded by using the methodology "GRAPHICS INTERCHANGE FORMAT Version 89a" specified by Compuserve Incorporated (a U.S.-based company).

Chapter 6 Audio coding

6.1 MPEG-2 Audio

LC profile of AAC method specified in STD-B32 Part 2^{1} and in ISO/IEC 13818-7 shall be used for audio coding by MPEG-2 audio.

Audio coding of BC method specified in ISO/IEC 13818-3 can be also used when necessary.

6.2 PCM (AIFF-C)

AIFF-C (Audio Interchange File Format) specified in DAVIC 1.4 Specification Part 9 Annex B shall be used for audio coding file format using PCM with constraints specified in Table 6-1.

Table 6-1 Constraints of PCM coding parameter

Sampling frequency of television sound	Condition of PCM coding	
	Sampling frequency	Bit length
32 kHz	$32 \mathrm{kHz}, 16 \mathrm{kHz}, 8 \mathrm{kHz}$	8 bit or 16 bit
48 kHz	$48 \mathrm{kHz}, 24 \mathrm{kHz}, 12 \mathrm{kHz}$	8 bit or 16 bit

6.3 MPEG-4 audio

ISO/IEC 14496-3 shall be used for audio coding by MPEG-4 audio.
The appropriate coding method should be selected according to types (music, audio) and bit rate. Relation of each coding method and appropriate bit rate of MPEG-4 audio is described in informative explanation 1.

6.4 Coding of synthesized sound

For coding of synthesized sound, a method specified in transmission standard related to television data multiplex broadcasting (ARIB STD-B5 "Data multiplex broadcasting for the conventional television using vertical blanking interval") shall be used.

[^0]
Chapter 7 Character coding

7.1 JIS 8bit character code (8bit-character code)

8bit character code in this standard is an enhanced method of ARIB STD-B5 "DATA MULTIPLEX BROADCASTING SYSTEM FOR THE CONVENTIONAL TELEVISION USING THE VERTICAL BLANKING INTERVAL" (Ver. 1.0, Aug. 6, 1996).

7.1.1 Types and structure of character sets

7.1.1.1 Coding structure and code extension techniques

The code table of 8 bit-code is shown in Figure $7-1$ and structure of 8 -bit code (extension techniques) is shown in Figure 7-2. Coded representation of invocation of code elements (to invoke the code element G0, G1, G2 and G3 in the 8-bit code table in use) is listed in Table 7-1. Coded representation for designation of graphic character sets (to designate one character set from the graphic character sets for G0, G1, G2 or G3) is listed in Table 7-2. Classification of code set and Final Byte is listed in Table 7-3.

7.1.1.2 Type of character code set

The types of character code sets available to the specification shall be Kanji set, alphanumerical set, Hiragana set, Katakana set, mosaic set, supplemental character (Gaiji) set, macro-code set, JIS compatible Kanji Plane 1 set, JIS compatible Kanji Plane 2 set, and additional symbols set.

7.1.1.3 Code table of character code set

The graphic symbols of the Kanji set, alphanumerical set, Hiragana set, Katakana set and mosaic set are shown in Tables 7-4 to 7-9. The JIS compatible Kanji Plane 1 set is identical with the Kanji Set for Information Interchange, Plane 1, as specified in JIS X213: 2004. The JIS compatible Kanji Plane 2 set is identical with the Kanji Set for Information Interchange, Plane 2, as specified in JIS X213: 2004. The additional symbols set consists of additional symbols and additional Kanji characters, as shown in Tables 7-10 and 7-11. When the Kanji Set for Information interchange, Plane 1 is not used, the range of Row 1 to Row 84 in Table $7-4$ is imported to the JIS compatible Kanji Plane 1. Note that any glyph contained in the specification is provided for the purpose of reference.

7.1.1.4 Non-spacing character

Non-spacing character shall be row 1 cell 13 to 18 in Table 7-4 (1) (Kanji set (1)) and row 2 cell 94 in Table 7-4 (2) (Kanji set (2)) and non-spacing mosaic shall be the mosaic in (3) and (4) of Table 7-8.
Non-spacing character and non-spacing mosaic is displayed by cumulating character, mosaic or space, etc. specified by the successive code.
Codes, which can be used between codes of character, mosaic or space in combination with nonspacing character and non-spacing mosaic codes, are shown in Table 7-33.

7.1.1.5 Supplemental characters (Gaiji)

Codes used for Gaiji character code shall be 1-byte code or 2-byte code.
1-byte Gaiji character code shall be 15 sets from DRCS-1 to DRCS-15 and each set consists of 94 characters. ($2 / 1$ to $7 / 14$ is used. When column number is indicated in one digit by indication method of column number/row number, column number is indicated by binary notation in 3 bit from b7 to b5.)

Gaiji character code set in 2 byte shall be the set of DRCS-0. DRCS- 0 is a code table of 2 bytes and consists of 8836 characters from Row 1, Cell 1 to Row 94, Cell 94.

Coding of DRCS pattern data shall be in compliance with "AnnexD Coding of DRCS pattern data".

7.1.1.6 Macro coding

Macro coding is a coding of functions composed by a sequence of code(hereafter referred to as "macro sentence") consisting of character code (including patterns of both mosaic and DRCS) and control code (hereafter referred to as "macro definition").
Macro definition is made by macro control in Table 7-16.
Macro code set is 1 byte code set and consists of 94 characters (in range from 2/1 to $7 / 14$). When the macro character is appeared, sequence of code of macro sentence is decoded. When macro definition is not made, it shall be in accordance with default macro sentence indicated in Table 7-18 shall be applied.

7.1.2 Coding of control function

7.1.2.1 $C 0$ control set

Structure of C 0 control set and its function shall be in compliance with Tables 7-14 and 7-15 respectively. When it is accompanied with parameters, its parameters are sent immediately after each code.

7.1.2.2 $\mathbf{C 1}$ control set

Structure of C 1 control set and its function shall be in compliance with Table 7-14 and 7-16 respectively. When it is accompanied with parameters, its parameters are sent immediately after each code.

7.1.2.3 SP and DEL

SP (space) makes the entire specified current character field in background colour and DEL (delete) makes the entire specified current character field in foreground color.

7.1.2.4 CSI

Control code extension by CSI (control sequence introducer) code is as shown in Table 7-17.

Note: *1 to *4 are for special code area described as follows; Geometric coding shall add *1 (SP) and $* 3$ (DEL) to GL area and $* 2(10 / 0)$ and $* 4(15 / 15)$ to GR area.
*1--- SP, *2---10/0, *3---DEL, *4---15/15
Figure 7-1 Code Table

Note: Returning from other coding method to 8 bit-code is made by data size of the data unit.
Figure 7-2 Structure of 8-bit code (Extension techniques)

Table 7-1 Invocation of code elements

Acronym	Codes Representation		Function		
			Code element	Invocation area	Invocation effect
LS0	$00 / 15$		G0	GL	Locking shift
LS1	$00 / 14$		G1	GL	Locking shift
LS2	ESC	$06 / 14$	G2	GL	Locking shift
LS3	ESC	$06 / 15$	G3	GL	Locking shift
LS1R	ESC	$07 / 14$	G1	GR	Locking shift
LS2R	ESC	$07 / 13$	G2	GR	Locking shift
LS3R	ESC	$07 / 12$	G3	GR	Locking shift
SS2	$01 / 9$		G2	GL	Single shift
SS3	$01 / 13$		G3	GL	Single shift

(1) ESC shall be $01 / 11$.
(2) Locking shift means to invoke in GL or GR area the specific code element and keep it in the same area until another locking shift invokes in the same area the specific code element.
(3) Single shift means to invoke one code following to it in the GL or GR area temporary.

Table 7-2 Designation of graphic sets

Codes Representation					Function	
					Classification of Graphic sets	Designated
ESC	02/8	F			1-byte G set	G0
ESC	02/9	F				G1
ESC	02/10	F				G2
ESC	02/11	F				G3
ESC	02/4	F			2-byte G set	G0
ESC	02/4	02/9	F			G1
ESC	02/4	02/10	F			G2
ESC	02/4	02/11	F			G3
ESC	02/8	02/0	F		1-byte DRCS	G0
ESC	02/9	02/0	F			G1
ESC	02/10	02/0	F			G2
ESC	02/11	02/0	F			G3
ESC	02/4	02/8	02/0	F	2-byte DRCS	G0
ESC	02/4	02/9	02/0	F		G1
ESC	02/4	02/10	02/0	F		G2
ESC	02/4	02/11	02/0	F		G3

Table 7-3 Classification of code set and Final Byte

Classification of graphic sets	Graphic sets	Final Byte (F)	Remarks
G set	Kanji	04/2	2-byte code
	Alphanumeric	04/10	1-byte code
	Hiragana	03/0	1-byte code
	Katakana	03/1	1-byte code
	Mosaic A	03/2	1-byte code
	Mosaic B	03/3	1-byte code
	Mosaic C	03/4	1-byte code, non-spacing
	Mosaic D	03/5	1-byte code, non-spacing
	Proportional alphanumeric	03/6	1-byte code
	Proportional hiragana	03/7	1-byte code
	Proportional katakana	03/8	1-byte code
	JIS X 0201 katakana	04/9	1-byte code
	JIS compatible Kanji Plane 1	03/9	2-byete code
	JIS compatible Kanji Plane 2	03/10	2-byete code
	Additional symbols	03/11	2-byete code
DRCS	DRCS-0	04/0	2-byte code
	DRCS-1	04/1	1-byte code
	DRCS-2	04/2	1-byte code
	DRCS-3	04/3	1-byte code
	DRCS-4	04/4	1-byte code
	DRCS-5	04/5	1-byte code
	DRCS-6	04/6	1-byte code
	DRCS-7	04/7	1-byte code
	DRCS-8	04/8	1-byte code
	DRCS-9	04/9	1-byte code
	DRCS-10	04/10	1-byte code
	DRCS-11	04/11	1-byte code
	DRCS-12	04/12	1-byte code
	DRCS-13	04/13	1-byte code
	DRCS-14	04/14	1-byte code
	DRCS-15	04/15	1-byte code
	Macro	07/0	1-byte code
Remark: Macro shall be in compliance with Clause 7.1.1.6.			

Table 7-4 (1) Kanji Set (1)

Table 7-4 (2) Kanji Set (2)

Table 7-4 (3) Kanji Set (3)

Table 7-4 (4) Kanji Set (4)

Table 7－4（5）Kanji Set（5）

－1	－	O	\cdots	\square	\cdots	\rightarrow	F	䫆	㟷	國		1哯	冢	1	矣	茐	路	垵	요ํ	葍	路	㖪		製	等	，	翟	等		烟	
\rightarrow	－	\bigcirc	\cdots	\square	\rightarrow	O	9	娚	製	國	國	要	家	照	空	岳	緒	或	血	家	睘	睘	窝	等	成	枵	紫	釆	骩	vi	
\rightarrow	－	－	\cdots	－	－	－	\％	类	1	翏		菱	等	23	宕	会	县	絆	宔	磁	告	葹	硈	京	宗	鹤	袻	\％	㖸	${ }^{3}$	駄
\rightarrow	－	\bigcirc	\cdots	r1	－	O	尔	雍	1	L	空		薙	3989	臨	高亚	事	家	品	呚	絩	垉	类	桇	吕	菏	－	这	輻	翏	茵
\rightarrow	O	－	\rightarrow	－	\rightarrow	－1	$\stackrel{3}{7}$	吅	樶	碞涨	苓	\％	率	诵	圆	胸	穼	寀	然	聏	盛	综	浅	．	近	㐭	碞	炮	\％	思	
－	－	\bigcirc	－	\bigcirc	\cdots	－	$\stackrel{\text { g }}{ }$	近	動	首	害	部	300	哭	袊	慗	莮	埪	品	荋	荗	\％${ }^{5}$	通	㗊	4	，	${ }^{\text {cha }}$	战	断	䓵	
\rightarrow	O	－	－	－	－	－	$\vec{\square}$	管	险	$\underline{5}$	䂞	管	部	哖	딴	臨	＋	䆓	品	＋	－	然	䋓	第	\％	嗡	詸	镕	等	管	佬
－	－	－	－1	－	－	O	\％	重	區	1010	）	箱	部	遥	吘	空	漓	品	長	滛	碓	完	家	筀	明	速	牟	的	舜	䂞	球
\rightarrow	O	－	－	\cdots	－1	－	¢	5	年	：c	－塸	3	2	䨖	4	睘	벼ํ	采	年	㧱	傢	第	㙖	3	䍂	部	成	职	䇢	㗊	䍖
－	O	－	\bigcirc	\square	\rightarrow	O	¢	吅	媱	¢	良	兴	－	锥	Fr	\％	7	䂧	真	防	｜R1	象	䁂	硈	擎	药	通	\％	䖍	京	5938
－	－	－	－	－	－	－1	ल	茹	回	家	－ H_{4}	唯	筥	然	棫	年	缐	垁	19	等	管	震	第	蹵	5	甾	橆		穊	家	㖪
\rightarrow	O	－	－	－	O	－	$\stackrel{0}{0}$	15	［	䂙	旁	寅	氛	缶	W）	然	㯱	営	先	倖	当	囬	綰	，	東	碞	等	通	\％	家	
－	O	－	－	\bigcirc	\rightarrow	－	$\stackrel{m}{0}$	各	浐	林	雍	速	熬	理	耑	缐	突	喿	矣	家	郞	效	咕	永	畕	\％	臨	整	罭	硈	迷
－	－	－	－	－	\cdots	O	\％	出	0	䛚	管	洓	缕	瑵	媅	知	衰	畜	合	器	布等	发	䀢	然	皆	䛒	戌	紗	品	包	等
\rightarrow	－	－	－	－	－	－	M	［	偊	市	鹤	1 师	等	搨	㛺	管	吽	3 3	4	豎	等	鸥	登	畕	製	澏	蒜	罂	洓袞	冏	${ }^{\text {x }}$
\rightarrow	O	－	－	－	－	\bigcirc	¢	8	區	起		㐫	察	綗	IT	家	郶	－	紜	等	委	景	樓	苇	詻		器		枵	2	8
\bigcirc	\cdots	\rightarrow	\cdots	\rightarrow		－1	\cdots	如		밤	貇	轪	㖪	詮	採	紫	遄	Ca	长	辰	坦	㑒	妳	棠	鹪	영	喦	\％	产	踻	
\bigcirc	－	\rightarrow	\rightarrow	7	\rightarrow	－	\％	5	柂	\square	1交尔	蚝	隊	退	酤	锶	号	20	早	兹	至	睘	医	暴	䜜	相	㽞	这	楽	部	號
\bigcirc	\cdots	\cdots	\cdots	－	－	\rightarrow	\％	$\stackrel{\sim}{\sim}$	咞	䧄	管	空	管	無	臨	媱		1－x	带	先	温	言	絩	思	策	空	－	建	乐	號	\％
\bigcirc	\cdots	－	\cdots	\cdots	O	－	$\stackrel{\sim}{\sim}$	\checkmark	¢2	畋	管	等	閭	単	愿	鿎	縎	E	帚	等	磍	唇	骂	京	校	澵	樶	䢒	號	\％	完
\bigcirc	\rightarrow	\cdots	\rightarrow	－	\rightarrow	－	N	5	傫	奖	尞	彆	気	答	帘	聟	亨	芴	圱	＋	等	景	家	क	畜	格	近	䢒	答	堍	嘍
－	\cdots	\cdots	－1	O	\cdots	－	$\stackrel{0}{0}$	z	に	國	朢	尝	美	漸	零	运	廡	帮	吊	类年	編	吹	垵	＋	坴	製	标	景	䋉	淔	忽
\bigcirc	\cdots	\cdots	－	O	－	－	प		$三$	ப	1等	動	剔	䜿	硈	圌	燅	細	可	医	＜	䀼	莍	－	諅	준	圂	噳	29	罭	等
\bigcirc	\cdots	\rightarrow	\cdots	－	－	－	N	炮	答	1	］	达	節	䛗	号	睢	比	㘧	H	䑑	考	然	售	烑	䀂	雉	星		品	起	幽
\bigcirc	－	－	－	7.	\cdots	\rightarrow	$\stackrel{\text { ¢ }}{ }$	伿	筌	品	登	㞃	意	铨	10	这	喿	恶	F	首	氽	柣	榣	震	潩	韻	暑		5		2
\bigcirc	－	－1	－	\cdots	－1	－	N	12	罥	，	产	全	告	䜌	知	斋	㙑	䖥	穴	荗	恽	定		特	반		晠	誥	等	獄	5
－	\cdots		O	-1	O	－	त	1	慗	兂	竪	悉		誓	4	管	䖯	3	\％	雃	等	詨	涎	利	）		監	场	\％	，	2
\bigcirc	\cdots	\rightarrow	－	-1	－	－	¢	昭		$1{ }^{\text {P }}$	㗎	妾	焉	緆	恨	穼	年	\％	凩	等	敕	袻	寿	钕	䢒		\％	\％	家	限	委
－	\sim	\sim	O	O		\cdots	9	風	等	國	部	帮	医	却	餅	緊	先	瑶	皆	家	联	知	楽	\％${ }^{8}$	㫫		管	\％	＊	限	童
\bigcirc	\rightarrow	－1	－	－	－1	－	$\underset{\sim}{\infty}$	H	管	罗	憵	4 ${ }^{4}$	跉	俈	䙹	宲	4	等	去	5	動	断	筧	䨝	\％	䝂	愛	算	晨	＊	
O	\cdots	\rightarrow	O	－	－	－	$\stackrel{ }{5}$	\％ 11	唇	5	慗	路	铤	战	㮏	朢	7 ${ }^{4}$	噳	部	豈	遃	通	超	\％	揊	睘	䅋	汤	先	罂	䜿
－	－	\cdots	O	O	－	O	\bigcirc	晥	超		愛	热		年	キ	豈	里	祡	䛗	T	萲	E	咅	运			奚	国	熍	${ }^{5}$	経
O	\rightarrow	－	\rightarrow			－	$\stackrel{\square}{\square}$		筞	家	䜿	炜	熍	蔔	制	蜀	圱	絽	営	官	朢	䢕	猲	淮	県	新	諼	第	管	㫥	䎂
\bigcirc	\cdots	\bigcirc	\cdots			O	ヌ	等	笉	気	年	云	呇	筮	mad	＋	苼	霌	枟	归	蝆	冠	通	类	蒾	怘	現	期	限	瞋	
－	\cdots	－	\cdots		O	\cdots	$\stackrel{9}{9}$		笙	3	路	步	家	理	罤	这	会	\％	宮	楘	骨	退	索	F	通	翌		通	类	陦	5
\bigcirc	m	－	\cdots	\square	－	－	$\stackrel{\square}{7}$	熍	园	哐	㘹	去	安	軚	檪	斑	曲	等	家	䇿	喿	戔	，	睘	䩫	教	詈	4		酸	
\bigcirc	－	\bigcirc	\rightarrow	O		\square	\cdots	紫	5	3	㟈	号	客	虫	䍂	帤	吊	要	年定	，	郖	施	㰢	－	或	堮	圖	兾	茄	近	
\bigcirc	－	－	－1	O	\cdots	O	O	喭	辰	鿬	筺	号	離	$\frac{1}{4}$	湤	部	里	管	畋	言	照	边	湅	阿	郎	罝	S		边	號	
－	－1	－	－1	O	－	－1	a	X	知	嫁	䜿	－	䝂	20	限	㗔	品		园	品	娕	现	特	囫	嗗	盁	挂	䈠	絽	䢻	碞
O	－	－	－1	\bigcirc	－	\bigcirc	∞		知	輅	管	國	笭	管	憵	智	骩	遠	傹	等	5	\％	颜	朢	禹		芠	京		国	豎
\bigcirc	－	－	－	\cdots	－	－	N	\＃	580	荗	南	螑	罢	ER	鹤	竘	全	等	䅋	弱	4	旱	呚	㢮	矣	通	䧉	新	动	勍	
\bigcirc	\cdots	－	\bigcirc	－1		－	ω		嗗	家	監		國	云	翌	蜽	䒚	䦔	骂	䋰	車	整	知	景	過		告	告	等	号	
\bigcirc	－	－	－	\square	0	7	6	글	婦	然	豎	包	込	2	2	曘	空	㦴	襄	婯	理	品	笿	寞	第	\square	㷂	造	骨	嵒	䳐
\bigcirc	－	－	\bigcirc	\square	－	O	－	＜	短	熍	製	圆	萠	宜	管	哭	䍃	號	锱	䜿	4	是	\％		國	先	號	逃		限	罵
O	－	－	O	O	\square	－	∞	K	速	T	雨	䁂	F	臨	丕	洨	全家	T	監	軗	H	哭	哯	整	囫	－	罟	迷		荺	
0	\rightarrow	－	－	－	－	－	N	H	辔	辰	賋	圂	8	逪	皆	\％	至	畐	禜	\％	－	N	動	西	算	K	䃘	就	19	䣅	
－	－	O	－	O	O	－	1	4	㖃	榣	國	图	莫	些	笭	近		䁚	瀋	空	諒	界	㙂	無	品	管	晹		家	烈	司
	－	合	g	I	．	司		∞	\％	¢	\cdots	\％	\％	\％	$\stackrel{4}{0}$	0	令	8	品	8	6	8	\％	\％	${ }_{6}$	8	¢	8	8	\bigcirc	
Second Byte											¢		～		\sim																
							ล	－	－1	O	－-1	O	\square	O	\cdots	－	\rightarrow	O	－1	\bigcirc	－1	\bigcirc	\rightarrow	－	－1	－	\rightarrow	\bigcirc		－	
							O	0	0	－-1	－	－	O	\rightarrow	\cdots	O	O	－	－	O	O	－	－1	O	O	7	\cdots	O	－	－	
							5	0	O	0	0	\square	－	－1	\rightarrow	O	\bigcirc	－	O	\cdots	－	\cdots	－	\bigcirc	－	－	－	－	\checkmark	－	
							直 ${ }^{\text {® }}$	O	O	0	\bigcirc	O	\bigcirc	O	O	\rightarrow	\square	\rightarrow	－1	－1	\cdots	－1	\cdots	－	－	\bigcirc	－	0	－	－	
							笑		\cdots	$1-1$	－-	\cdots	－1	\cdots	－1	\rightarrow	－	－	17	－1	\cdots	－1	－	－	－	O	－	－	－	－	－
							\％	－	O	0	0	－	－	O	－	O	O	\bigcirc	O	O	O	O	－	－	－	－	－	－	\square	－	
												－						－1					\cdots								

Table 7－4（6）Kanji Set（6）

		－	\cdots	\rightarrow	－1	－	¢		第	糿	ㅇㅐㅐ	栊	－	家	H		这	縕	橆	莗				家			吅	\％	䞨	通	
\rightarrow		\square	\rightarrow		－	\cdots	¢	추ํ	垵	㗊	國	第	䀦	㵙	\％	1	等	永	訿	躴	（2）		4	嘼		\％	㷋	$\stackrel{*}{*}$	或	嘕	込
－	－	\cdots	\cdots	\cdots	－	－	¢	踌	倥	荙	国	惑	罡	管	4	全	敕	登	闗	告	，	辰	－	嵒		，		＊	等	瀶	
\rightarrow	\cdots	\cdots	－1	O	－	\cdots	－	家	感	込	图	W	句	年	＋	，	＋	樶	葫	称		家	2			－	2	二厶力	8	澹	E
－	－	\cdots	\square	－	\cdots	－	\％	黙	4	管	目	将	朿	國	空	4	S	－	畕	等	2	桼	䛗	詸		L	糿	䜿	品	䝂	\％
\cdots	－1	\cdots	\rightarrow	O	－	－	¢	全	袚	知	通	老	－	近	䊽	ก	䔄	監	詅	盛	䍙	3	4	國		㐍	持	4	詥	受	1
－1	\sim	\checkmark	\cdots	O	－	－	\％	袻	的	炜	\square	${ }^{*}$	4	L	号	E．	＋	E	嗡	W	㚾	街	椇	部	＝	䢒	fa	碞	䁷	管	t
－	－1	－	O	\cdots	7	－	Co	管	熍	事	妾	\％	N	运	贺	2	等	鼻	機	慜	\％	琼	2	法		家	䢙	－	馬	园	\％
－1	－1	－1	－	\square	－1	－	¢	新	萌	宸	－	s	维	－	E	29	硈	管	教	4	牫	5	S	盌		告	迵	艮	\％	管	溉
\rightarrow	\square	－1	－	\cdots	－	－1	$\stackrel{\square}{8}$	掔	台品	官	整	K	k	束	早	＂	5	䂓	橆	盛	亲		整	翟		近	L	－	部	岗	4
－1	\rightarrow	－1	－	－	－	\bigcirc	¢	背	兩	圁	学	洞	蒳	年	球	管	去		皿	혁	走	堅	㧤	縕	，	2	热	管	5	暗	走
－	－		O	－	\rightarrow		\％	等	荎	哭	坛	H	話	教	\ldots	䱐	䍉	㖣	＋	－	\％	㴆	寝	詅		㫛	艮	嘋	衰	苗	
\rightarrow	－	\cdots	－	－	7	－	－	饱	部	吅	然	掃	整	岩	头	腺	罭	离	${ }^{4}$	＋5	尔	资	－	紝	10	5	2	＋	这	穴	\pm
－	－		O	－	0	－1	－	臨	可	噌	矣	K	哮	通	首	洓	㫛	郘	윷	＋${ }^{\text {P }}$	¢	明	永	＋			20	铝	4－1	品	榾
\rightarrow	－	－	\bigcirc	－	\bigcirc	－	¢	先	家	\％	䛗	H	\％		2	漓		${ }_{\text {\％}}^{4}$	者	5	58	事	奖	臨	髧	迢	令	\％	等	區	如
\rightarrow	\cdots	－		－	7	－	\％	迷	需	部	断	f	＊	\pm	S	1	澵	㖵	戌	知	施	院	Q	楽		品	S	连	部	4	d
\rightarrow	\cdots	－	\cdots	\rightarrow	－1	－	－	F	家	冨	场	榀	溉	䢒	等	等	强	热	皆	要	家	器	2	趔	．	3	品	哭	等	I	走
-1		O．	\cdots	－1	O	1	F	宪	畐	家	永	数	嗗	登	䌊	傀	製	皿	紫	哑	党	䲴		\％	發	4	2	䋛	耏	－	永
－		－	\rightarrow	\rightarrow	－	－	$\stackrel{0}{\sim}$	㕺	哭	H	䝂	商	部	空	莭	敕	\％		猄	知	谷	越	或	品	1	连	${ }^{2}$	鲑	器	H	20
－		－	\cdots	－	\rightarrow	－	$\stackrel{\sim}{\sim}$	한	號	暹	3		敬	管	部	告	然	雍	语	楽	$\%$	\cdots	年	品	\％	竞	部	2	5	Ir	
\rightarrow	\cdots	－		－	\cdots	－	¢	働	做	圆	等	x	詋	鍳	家	薂	新	臩	蝩	擎	＊	嗾	家	带	犦	通	第	\％	4	昷	＋1
－		－		－	－	－	\cdots	5	寝	沓	영	\times	镸		沓	寀	戌	如	洅	然	\＃	校	瑯	1		䨓	察	震	虽	缺	8
－		－	\checkmark	－	－	－	$\stackrel{\sim}{\sim}$	皆	䕄	d	F	絡	香	教	星	8		番	＊	絲	录	越	唇	空	1	第	号	限	臨	錐	－
\cdots	\cdots	－	－	\cdots	7	\square	$\stackrel{\square}{2}$	ft	品	絽	管	㖘	唽	昰	登	等	罊			暏	砱	n	4		－	产	古	踊	器	綯	豈
\rightarrow	－	－	－	\square	－1	－	\％	勍	埱	管	䅉	等	2	㫿	睘	包	4	4	标	等	㖪	05	旡	嵒		点	\％	5	＋		男
-1		－	－	\cdots	－	\cdots	\％	景	录	卧	整	里	知	奖	界	緊	翟	［50	卧	骨	新	发	察	品	等	回	明	掦	惑	部	緟
		－	－	\square	O	－	9	田	㢄	考	－	㑘	比	颙	年	夌	令	－	鯀	畺	品	楽	羪	盖	蒌	㗊	筬	呺	绿	先	\％
－	\square	O	－	－	\cdots		5	照	回	品	售	共	1	先	5		眮	誾	湍	制	\square	怯	咎	圆		坏	匏	萝	登	1	2
－		O	－	－	\rightarrow	\bigcirc	8	豎	晬	㗐	救	z	㴥	退	睘	5	＋	K／	珃		号	遥	䢒	良		塞		西	4	動	
\rightarrow	\cdots	－	－	－	O．		$\stackrel{3}{5}$	造		监	然	\＃	制	\square	国	紋	闍	臤	产	践	第	兵	偁	圌	挝	䨐	営	第	Sa	峢	药
-1		－	－	－	－	\bigcirc	\％	年	家	容	製	县	（1）	园	吅	¢	俞	断		䂞	臨	裆	沼			،		樓	臓	媬	
\cdots	O			－			8	捳	姑	世	H	奢	t	三	这	或		域	碞	聏	\％	定	浚	蔵				燢	瞤	费	z
\cdots	－	－				－	O	팔	因	号		낭	䝰	W	运	枋	閨	眹	整	数	（\％）	買	㕺	然		堅	碞	絡	至	管	
\rightarrow	O	\cdots			－		$\overrightarrow{6}$	，	4	回		筀	㭞	28	浐	骂	W	－	沲	睪	碞	要	緊	品	䲞	管	昭	原	4	呺	n
\rightarrow	O	\rightarrow		-1	O	\bigcirc	8	官	5	矣	登	皟	局	賞	城	．	式	世	＊	瑶	鮉	紜	國	䨗	缼	3	哏	原	${ }^{\circ}$	傫	－
-1	O			－			\％	家	愘	盛	锜	陶	等	㺺	紊	＊	雷	H	登		成	做	䈅	数		管	嘅		県	窝	
\rightarrow	O			－	－10	－	$\stackrel{\sim}{\circ}$	断	茐	－	21	巛	暒	E	\pm		E			－	柬	退		m		臨	第		\％	然	2
\rightarrow	O			－	O		5	界	畋	迷	等	＊	弇	登	园	誓	敕	粦	桃	需	由	罂	品	筑	\％	明	园	哭	吻		－
\cdots	O			－	\bigcirc	－	$\stackrel{0}{5}$	雨	，	－	欲	혼	离	3	出	号	等	1	矢	室	家	楼	欴	䁂	笭		8	\％	空	复	
\cdots	O		O	－			号	臣	D	3x	鱛	䇨	碞		号	迷	堮	㖵		等	4	梡	容	园		\％	明	뻥	缐	啚	S
\rightarrow	O	－1	O				ज	管	边	部	荎	萓	，	场	F	虽	浣	造	早	数	离	准	会	等	嗗		4	，	時	㷰	
$\underline{-1}$	O		O	\rightarrow	O	－	9	4	共	第	䝉	缼	¢	笭	憲	壕	臨	激	范	W		医	＊	茅		䓨	澵	令	號	監	缶
\cdots	－		O	\cdots	－	－	\％	爰	阿	绘		豯	84	音	昭	群	騏	粦	号	管	縉	迹	免	茵		盛	0	－	盽	虽	
－1	O	-1	－	－			$\stackrel{7}{5}$	掣	新	1	堛	教	H	等	家	缶	晅		氯	岿	學	舜	囫	然	格	复	＊	就	\＃	器	
\rightarrow	O	\rightarrow	－	－			\bigcirc	辰	\cdots	堅	－	星	䜿	管	离	\sim	或	缶	标	朁	答	筦	宾	筦		罂	${ }^{5}$	硍	部	馬	8
\rightarrow	O		O	－	O－	－	\％	$\underline{4}$	＊	焉	a	軍	䭆	茦	带	欻	洅	客	䎯	癸	或	埴	冠	朢	閩	照	湿	鸸	空	1	困
\rightarrow	－		O	－	O	－	\％	孚	5	齐	溉	＊	绞	镪	帤	星	罢	空	业	嵒	费	细	蜀	眔	罢	歌	哭	＋	99919	鱼	E
		econ	nd	Byte				$\underset{\sim}{\infty}$	寺	8		앙	\％		4	迷行		）		8.5		잉		\％	¢	8		8			
							ล	－	\cdots	－	\cdots	\bigcirc	－1	O	$-$	O	\square	－	m	－	－1	O	－	－	－	ㅇ	\square	－	－	－	7
								O	O	\cdots	－	O	－	－	\cdots	－	－	－	\cdots	O	\bigcirc	－	－	－	－	\square	－	－	－	－	
							这 ${ }^{\circ}$	－	－	－	－	－	\square	－1	－1	－	－	－	－	\square	7	－	－	－	－	O	－	－	－	－	
							号	－	－	O	O	－	－	－	－	\sim	－1	\cdots	\cdots	\sim	\cdots	－	－	－	－	－	－	－	－	－	－
							皟	－	7	－1	－	\square	\cdots	－	\cdots	－	－1	\cdots	\square	\cdots	－	－	\sim	－	－	－	－	－	－	－	－
								응	응	O	ㅇ	응	은	의	응	응	응	－	안	은	－	은	－	\checkmark	\sim	－	－	－	－		－
																									\square						

Table 7-4 (7) Kanji Set (7)

Table 7-4 (8) Kanji Set (8)

Table 7-5 Alphanumeric set and proportional alphanumeric set

			b, 0		0	1	1	1			
				1	1	0	0	1	1		
			0	1	0	1	0				
					2	3	4	5	6	7	
0	0	0	0		0	(1)	P		p		
-	-	1	1	!	1	A:	Q	a	q		
- 0	1	0	2	"	2	B	R	b	r		
0		1	3	\#	3	C	S	c	s		
0	10	0	4	\$	4	D	T	d	t		
0	\bigcirc	1	5	\%	5	E	\cup	e	u		
0	11	-	6	\&	6	F	V	f	v		
\bigcirc			7		7	G	W	g	w		
1	0	0	8	1	8.	H	X	h	x		
1	\bigcirc	-	9)	9	1	Y	i	y		
1		0	10	*	:	J	Z	j	z		
1	0		11	+	;	K	[k	\{		
11	10	0	12	,	$<$	L	\nrightarrow	1	1		
1	10	-	13	-	=	M]	m	\}		
1		10	14		>	N	へ	n			
1		11	15	1	?	0	-	\bigcirc			

Table 7－6 Katakana set and proportional katakana set

				b，10		0	1	1	1	1	
				b_{5}	1	1	0	0	1	1	
				bs	0	1	0	1	0		1
$\left.b_{1}\left[b_{1}\right] b_{1}\right] b_{1}$					2	3	4	5	6	7	
0	0	0	0	0		グ	夕	バ	厶	＋	
0	0	0	1	1	ア	ケ	テ	パ	χ	マ	
0	0	1	\bigcirc	2	$ア$	ゲ	デ	ヒ	モ	7	
0	0	1	1	3	1	$コ$	ツ	ビ	ヤ	ン	
0	1	0	0	4	イ	ゴ	ツ	ビ	ヤ	ヴ	
0	1	0	1	5	万	サ	ツ	7	ユ	カ	
0	1	1	0	6	ウ	ザ	テ	7	ユ	ヶ	
0	1	1	1	7	エ	シ	デ	70	\exists	，	
1	0	0	0	8	エ	ジ	F	へ	三	ど	
1	0	0	1	9	$才$	ス	F	ベ	ラ	－	
1	0	1	\bigcirc	10	才	ズ	－	ペ	リ	－	
1	0	1	1	11	力	セ	二	ホ	ル		「
1	1	0	0	12	カ	ゼ	ヌ	ボ	$レ$	1	
1	1	\bigcirc	1	13	キ	ソ	ネ	ポ	口	，	
1	1	1	\bigcirc	14	キ	ソ	\checkmark	マ	$ワ$	－	
1	1	1	1	15	ク	夕	八	ミ	7		

Table 7－7 Hiragana set and proportional hiragana set

				0,10 10 1 11 11 1 6 1 1 0 0 1								
				b，	0	d	0	0	1	0		
$0_{4}\left[b_{0}\left[b_{0}\right] b_{1}\right.$					2	3	4		5	6	7	
－		－	0	0		ぐ	だ		ば	む	の	
－		0		1	ぁ	け	ち		ぱ	め	岩	
0		1		2	あ	げ	ち		$ひ$	も	を	
－	0	1		3	い	こ	\bigcirc		び	p	ん	
－		\bigcirc		4	い	ご	\bigcirc		び	や		
$\|0\|$		0		5	j	さ	づ		ふ	ゅ		
01		1		6	う	ざ	て		ぶ	ゆ		
$10 \mid$				7	え	L	で		ふ	よ		
1	0	0		8	え	じ	と		ヘ	よ		
1	0	0		9	\％	す	ど		べ	ら		
1	\bigcirc	1		10	お	ず	な		ペ	り	－	
1	\bigcirc	1		11	か	せ	に		ほ	る		
		0		12	が	せ	ぬ		ぼ	れ	」	
	1	－		13	き	光	ね		ぼ	万		
1		1		14	ぎ	光	の		ま	力		
1	1	1		15	く	$た$	は		み	力	2	

Table 7－8 Mosaic set
（1）Mosaic set A

（3）Mosaic set C（non－spacing）
（2）Mosaic set B

（4）Mosaic set D（non－spacing）

－							
		2	3	4	5		6
OO OO 0	0		9	田	田		＋
－0 01	1		宫	固	目		H
$0 \cdot 10$	2		田	固	田		
$00_{0} 111$	3		早	田	田		田
$0 \cdot 100$	4		B	田	図		7
0.101	5		，	田	田	田	7
$00^{\circ} 110$	6		4	田	田		目
$0{ }^{\circ} 111$	7		因	B	目		7
$0 \cdot 10$	8		田	田	田		
1001	9		里	目	因		I
1010	10		\pm	田	田		，
10 11	11		A	因	园		
4100	12		因	因	E		
$11^{10} 1$	13		因	固	田	E	
$11^{1} 10$			团		沫		＋
－1］				1			臬

Table 7－9 JIS X0201 Katakana set

				$\begin{array}{\|l\|} \hline 070 \\ \hline 661 \\ \hline 6 \end{array}$			0	1	1	1 1 1 1					
				1	0	0									
				\square		0	1	0	1						
［04103］［2701								2		3	4	5	6	7	
0		0		0			－	夕	ミ						
0		0		1	－		ア	于	ム						
0	0	1		2	「		イ	ツ	χ						
0		1		3	1		ウ	テ	モ						
0		0		4			工	卜	ヤ						
0		0		5			才	ナ	극						
0		1		6	7		力	二	\exists						
0		1		7	ア		キ	又	ラ						
1	0	0	0	8	ィ		ク	ネ	リ						
1		0		9	ウ		ケ	1	ル						
1	0	1		10	エ		$コ$	八	$レ$						
1	0	1	1	11	オ		サ	ヒ	口						
1		0		12	＋		シ	フ	$ワ$						
1		0		13	ユ		ス	へ	ン						
1		1		14	ヨ		セ	ホ	＊						
1		1		15	ッ		ソ	マ	－						

Note: Proportional alphanumeric set, proportional hiragana set and proportional katakana set are character code set intended to use proportional font in the area of alphanumeric set, hiragana set and katakana set. Proportional font is the font of which width is defined in each character individually. Definition of width and height of each character (94 characters in range from 02/1 to $07 / 14$, excluding any spacing) is decided by each proportional character set and font, by the ratio of width and height of each character and width of the given display area of the character. Table of this proportion is specified in the operational guidelines. For proportional alphanumeric set, only width for horizontal writing is prescribed.

Table 7-10 Additional Symbols

Row	Cell	Description	Symbol	Row	Cell	Description	Symbol
90	1	accident					

25	drive slow 2			36	$40 \mathrm{~km} / \mathrm{h}$	

51	wide -format (16:9) broadcasting service				B-mode stereo compression broadcasting service	
52	multi-view television					

6			17		
7			18		
8			19		
－ 9			20		
10			21		
11		n^{2}	22		
12		n^{3}	23		
13	centimeter	C川	24		
14	square centimeter	C！${ }^{2}$	25		
15	cubic centimeter		26	70% size of the Kanji character＂氏＂	E
16			27	70\％size of the Kanji character＂副＂	

28	70\% size of the Kanji character "元"						

50		\square	62	baritone	$(b r)$
51		\sum	63	piano	(O)
52			64	soprano	(S)
53		2	65	mezzo-soprano	(IIS)
54		3	66	tenor	(4)
55	circled "CD"	\square	67	basso	(hS)
56	violin	$(V \cap)$	68	bass	(b)
57	oboe		69	trombone	$(+6)$
58	contrabass	(C)	70	trumpet	$(+\infty)$
$\begin{aligned} & 59, \\ & 60 \end{aligned}$	cembalo	(cemb)	71	drums	(0S)
61	harp		72	acoustic guitar	(28)

	73	electric guitar			89	disc jockey	
74	74	vocal			90	performed by	
75	75	flute	(f)		91	facsimile	Fax
	$\begin{aligned} & 76, \\ & 77 \end{aligned}$	keyboard	$\left(k \Theta_{i}^{:} y\right)$	93	1		$(\underline{\square})$
	$\begin{aligned} & 78, \\ & 79 \end{aligned}$	saxophone	(sax)		2		(1)
80	$\begin{aligned} & 80, \\ & 81 \end{aligned}$	synthesizer	$\left(S y_{i}^{i}\right)$		3		(7)
$\begin{aligned} & 82 \\ & 83 \end{aligned}$	$\begin{aligned} & 82, \\ & 83 \end{aligned}$	organ	$(0):(:)$		4		(2)
$\begin{aligned} & 84 \\ & 85 \end{aligned}$	$\begin{aligned} & 84, \\ & 85 \end{aligned}$	percussion	$(\text { peririn })$		5		$\binom{4}{4}$
86	86	disc record			6		(\square)
87	87	single disc record, compact disc	\backsim		7		$($ E)
88	88	koto (Japanese harp)			8		

8						

30	circled number twenty-two		41		(1)
31	circled number twenty-three	(23)	42		($)$
32	circled number twenty-four	(24)	43		(N)
33		(A)	44		(1)
34		(D)	45		
35		(\backsim)	46		(N)
36		(D)	47		
37		(Σ)	48		(\square)
38		(Γ)	49		
39		(\sqrt{n})	50		(D)
40		(\square)	51		(∞)

52						

	74	circled number ten		85		
	75	circled number eleven		86		
76	76	circled number twelve		87		
77	77	circled number thirteen		88		
78	78	circled number fourteen	(14)	99		
79	79	circled number fifteen		90		
80	80	circled number sixteen	16	91		
81	81			92		19
	82			93	circled number thirty-one	
	83					
8	84					

The table $7-10$ contains the same characters as those in the table $7-4$ except the range from Row 90 , Cell 45 to Cell 63, and the range from Row 90, Cell 66 to Cell 84. The characters in Row 90 and 91 rows (except the characters from Cell 45 to Cell 63Cell 66 to Cell 84 in Row 90) are the characters for the system for road and traffic information communication, as specified in ARIB STD-B3 " ARIB Standard for Operation of The FM Multiplex Broadcasting System", version 1.0(August, 1996).
The following table maps each character of the range from Row 90, Cell 45 to Cell 63, and from Row 90, Cell 66 to Cell 84, onto a corresponding code, which is used in the GL area, for the purpose of the reference.

Cell	Code	Cell	Code
45	7A4D	66	7A62
46	7A4E	67	7A63
47	7A4F	68	7A64
48	7A50	69	7A65
49	7A51	70	7A66
50	7A52	71	7A67
51	7A53	72	7A68
52	7A54	73	7A69
53	7A55	74	7A6A
54	7A56	75	7A6B
55	7A57	76	7A6C
56	7A58	77	7A6D
57	7A59	78	7A6E
58	7A5A	79	7A6F
59	7A5B	80	7A70
60	7A5C	81	7A71
61	7A5D	82	7A72
62	7A5E	83	7A73
63	7A5F	84	7A74

Table 7-11 Addtional Kanji Characters

JIS X0221-1:2001 Universal Multiple-Octet Coded Character Set (UCS) JIS X0213: 7-bit and 8-bit double byte coded extended KANJI sets for information interchange (including Amendment 1) JIS X0212-1990 Code of the supplementary Japanese graphic character set for information interchange ISO/IEC 10646:2003 Universal Multiple-Octet Character Set (UCS)		5	5	$\begin{array}{\|l} \hline \text { JIS X0213: 2-1-46 } \\ \text { JIS X0212: } 17-12 \\ \text { JIS X0221: U+4F9A } \\ \hline \end{array}$
			6	$\begin{array}{\|l\|} \hline \text { JIS X0213: } 1-14-25 \\ \text { JIS X0212: 17-27 } \\ \text { JIS X0221: U+4FC9 } \\ \hline \end{array}$
				$\sqrt{\square}$
1	$\begin{aligned} & \hline \text { JIS X0213: } 1-14-3 \\ & \text { JIS X0221: U+3402 } \end{aligned}$		7	$\begin{array}{\|l\|} \hline \text { JIS X0213: 2-1-78 } \\ \text { JIS X0212: 18-06 } \\ \text { JIS X0221: U+509C } \\ \hline \end{array}$
	$+$			年
2	ISO/IEC 10646: U+20158		8	$\begin{array}{\|l\|} \hline \text { JIS X0213: } 1-14-45 \\ \text { JIS X0212: } 18-56 \\ \text { JIS X0221: U+511E } \\ \hline \end{array}$
3	$\begin{array}{\|l\|} \hline \text { JIS X0213: } 1-14-9 \\ \text { JIS X0212: 16-47 } \\ \text { JIS X0221: U+4EFD } \\ \hline \end{array}$		9	$\begin{array}{\|l\|} \hline \text { JIS X0213: 2-3-16 } \\ \text { JIS X0212: 18-91 } \\ \text { JIS X0221: U+51BC } \\ \hline \end{array}$
4	$\begin{array}{\|l\|} \hline \text { JIS X0213: } 1-14-10 \\ \text { JIS X0212: } 16-49 \\ \text { JIS X0221: U+4EFF } \\ \hline \end{array}$		10	$\begin{array}{\|l\|} \hline \text { JIS X0213: 2-3-40 } \\ \text { JIS X0221: U+351F } \end{array}$
	$1 \sqrt{5}$			

11	$\begin{aligned} & \text { JIS X0213: 1-14-76 } \\ & \text { JIS X0221: U+5307 } \end{aligned}$	17	$\begin{aligned} & \text { JIS X0213: 1-14-93 } \\ & \text { JIS X0212: 21-09 } \\ & \text { JIS X0221: U+5496 } \\ & \hline \end{aligned}$
12	$\begin{aligned} & \hline \text { JIS X0213: 1-14-79 } \\ & \text { JIS X0212: 20-27 } \\ & \text { JIS X0221: U+5361 } \\ & \hline \end{aligned}$	18	$\begin{aligned} & \text { JIS X0213: } 1-14-88 \\ & \text { JIS X0212: } 21-10 \\ & \text { JIS X0221: U+549C } \end{aligned}$
			H^{5}
13	$\begin{aligned} & \text { JIS X0213: 2-3-53 } \\ & \text { JIS X0212: 20-30 } \\ & \text { JIS X0221: U+536C } \end{aligned}$	19	$\begin{aligned} & \text { JIS X0213: 1-15-1 } \\ & \text { JIS X0212: 21-15 } \\ & \text { JIS X0221: U+54A9 } \\ & \hline \end{aligned}$
	$\sqrt{\square}$		H
14	$\begin{aligned} & \text { JIS X0213: } 1-92-8 \\ & \text { JIS X0212: 61-74 } \\ & \text { JIS X0221: U+8A79 } \\ & \hline \end{aligned}$	20	$\begin{aligned} & \hline \text { JIS X0213: } 1-15-4 \\ & \text { JIS X0212: } 21-44 \\ & \text { JIS X0221: U+550E } \end{aligned}$
15	ISO/IEC 10646: U+20BB7	21	$\begin{array}{\|l\|} \hline \text { JIS X0213: 2-4-5 } \\ \text { JIS X0212: } 21-57 \\ \text { JIS X0221: U+554A } \\ \hline \end{array}$
			$\Pi\langle\Pi$
16	$\begin{aligned} & \text { JIS X0213: } 1-14-87 \\ & \text { JIS X0212: 20-82 } \\ & \text { JIS X0221: U+544D } \end{aligned}$	22	$\begin{aligned} & \text { JIS X0213: } 1-15-25 \\ & \text { JIS X0212: } 22-50 \\ & \text { JIS X0221: U+5672 } \end{aligned}$
	H^{+}		

23	$\begin{aligned} & \text { JIS X0212: 22-87 } \\ & \text { JIS X0221: U+56E4 } \end{aligned}$	29	$\begin{aligned} & \text { JIS X0213: } 1-15-82 \\ & \text { JIS X0212: } 25-52 \\ & \text { JIS X0221: U+5A23 } \end{aligned}$
	FI		
24	$\begin{aligned} & \text { JIS X0213: 1-15-37 } \\ & \text { JIS X0212: } 23-23 \\ & \text { JIS X0221: U+5733 } \end{aligned}$	30	$\begin{aligned} & \text { JIS X0213: 2-5-61 } \\ & \text { JIS X0212: 25-65 } \\ & \text { JIS X0221: U+5A55 } \end{aligned}$
25	JIS X0213: 1-15-38 JIS X0212: 23-24 JIS X0221: U+5734	31	$\begin{aligned} & \text { JIS X0213: 1-47-58 } \\ & \text { JIS X0221: U+5BEC } \end{aligned}$
26	$\begin{aligned} & \hline \text { JIS X0213: 1-15-55 } \\ & \text { JIS X0221: U+FA10 } \end{aligned}$	32	$\begin{aligned} & \hline \text { JIS X0213: 1-47-82 } \\ & \text { JIS X0221: U+FA11 } \end{aligned}$
			$\left[\frac{1}{\square / \sqrt{\square}}\right.$
27	$\begin{aligned} & \text { JIS X0212: 24-27 } \\ & \text { JIS X0221: U+5880 } \end{aligned}$	33	$\begin{aligned} & \text { JIS X0213: 1-47-79 } \\ & \text { JIS X0221: U+37E2 } \end{aligned}$
	十		
28	JIS X0213: 2-5-50 JIS X0212: 25-36 JIS X0221: U+59E4	34	$\begin{array}{\|l\|} \hline \text { JIS X0213: 2-12-5 } \\ \text { JIS X0212: 28-42 } \\ \text { JIS X0221: U+5EAC } \\ \hline \end{array}$

35	$\begin{aligned} & \text { JIS X0213: } 1-84-22 \\ & \text { JIS X0212: } 28-77 \\ & \text { JIS X0221: } \\ & \text { U+5F34 } \\ & \hline \end{aligned}$	41	$\begin{aligned} & \text { JIS X0213: } 1-85-18 \\ & \text { JIS X0212: } 34-05 \\ & \text { JIS X0221: U+6624 } \end{aligned}$
			$\square \xrightarrow{\square}$
36	$\begin{aligned} & \text { JIS X0213: } 1-84-26 \\ & \text { JIS X0212: } 28-84 \\ & \text { JIS X0221: U+5F45 } \end{aligned}$	42	$\begin{aligned} & \text { JIS X0213: } 1-85-40 \\ & \text { JIS X0212: } 34-66 \\ & \text { JIS X0221: U+66C8 } \end{aligned}$
	Hir		
37	$\begin{aligned} & \text { JIS X0213: 1-84-37 } \\ & \text { JIS X0221: U+5FB7 } \end{aligned}$	43	$\begin{aligned} & \text { JIS X0221: U+66D9 } \\ & \text { (JIS X0213: 1-29-76の異体字) } \end{aligned}$
	$/ \frac{\square}{\square u}$		
38	$\begin{aligned} & \text { JIS X0213: 2-12-39 } \\ & \text { JIS X0212: 29-54 } \\ & \text { JIS X0221: U+6017 } \end{aligned}$	44	$\begin{aligned} & \text { JIS X0213: } 1-85-44 \\ & \text { JIS X0212: } 34-77 \\ & \text { JIS X0221: U+66FA } \end{aligned}$
39	ISO／IEC 10646：U＋FA6B	45	$\begin{aligned} & \text { JIS X0213: } 1-85-23 \\ & \text { JIS X0212: } 34-31 \\ & \text { JIS X0221: U+66FB } \end{aligned}$
40	$\begin{aligned} & \text { JIS X0213: } 1-84-58 \\ & \text { JIS X0212: 30-41 } \\ & \text { JIS X0221: U+6130 } \end{aligned}$	46	$\begin{aligned} & \text { JIS X0213: 1-85-62 } \\ & \text { JIS X0212: 35-41 } \\ & \text { JIS X0221: U+6852 } \end{aligned}$
	N		

47	ISO／IEC 10646：U＋9FC4	53	ISO／IEC 10646：U＋233CC
48	$\begin{aligned} & \hline \text { JIS X0212: 36-25 } \\ & \text { JIS X0221: U+6911 } \end{aligned}$	54	ISO／IEC 10646：U＋233FE
49	$\begin{aligned} & \text { JIS X0213: } 2-15-11 \\ & \text { JIS X0212: } 36-33 \\ & \text { JIS X0221: U+693B } \\ & \hline \end{aligned}$	55	$\begin{aligned} & \text { JIS X0213: 1-85-82 } \\ & \text { ISO/IEC 10646: U+235C4 } \end{aligned}$
	F		$\underset{H}{\sqrt{15}}$
50	$\begin{array}{\|l\|} \hline \text { JIS X0213: 1-86-12 } \\ \text { JIS X0212: 37-06 } \\ \text { JIS X0221: U+6A45 } \\ \hline \end{array}$	56	$\begin{aligned} & \text { JIS X0213: 2-78-13 } \\ & \text { JIS X0212: } 38-31 \\ & \text { JIS X0221: U+6BF1 } \end{aligned}$
	干角		
51	$\begin{aligned} & \text { JIS X0213: 2-15-62 } \\ & \text { JIS X0212: } 37-29 \\ & \text { JIS X0221: U+6A91 } \end{aligned}$	57	$\begin{aligned} & \text { JIS X0213: 1-86-61 } \\ & \text { JIS X0212: 39-03 } \\ & \text { JIS X0221: U+6CE0 } \end{aligned}$
52	$\begin{array}{\|l\|} \hline \text { JIS X0213: 1-22-91 } \\ \text { JIS X0221: U+6ADB } \end{array}$	58	JIS X0213：1－86－67 JIS X0212：39－23 JIS X0221：U＋6D2E
	产実		

59	JIS X0213: 1-86-73 JIS X0221: U+FA45	JIS X0213: 1-87-25 JIS X0212: 41-07 JIS X0221: U+6FF9	

71	$\begin{array}{\|l\|} \hline \text { JIS X0213: } 1-87-66 \\ \text { JIS X0212: 42-30 } \\ \text { JIS X0221: U+7200 } \\ \hline \end{array}$	77	JIS X0221：U＋7421
	胝寺寺		
72	$\begin{aligned} & \hline \text { JIS X0213: } 1-87-84 \\ & \text { JIS X0212: 43-58 } \\ & \text { JIS X0221: U+739F } \\ & \hline \end{aligned}$	78	$\begin{aligned} & \text { JIS X0213: 1-88-5 } \\ & \text { JIS X0221: U+FA4A } \end{aligned}$
	$\pm \hat{1}$		
73	$\begin{array}{\|l\|} \hline \text { JIS X0213: 2-80-64 } \\ \text { JIS X0221: U+73A8 } \end{array}$	79	$\begin{aligned} & \text { JIS X0213: } 1-88-6 \\ & \text { JIS X0212: } 44-11 \\ & \text { JIS X0221: U+7426 } \\ & \hline \end{aligned}$
			$\pm \frac{大}{\square}$
74	$\begin{array}{\|l\|} \hline \text { JIS X0213: } 1-87-89 \\ \text { JIS X0212: 43-74 } \\ \text { JIS X0221: U+73C9 } \\ \hline \end{array}$	80	$\begin{aligned} & \text { JIS X0213: } 1-88-8 \\ & \text { JIS X0212: } 44-14 \\ & \text { JIS X0221: U+742A } \\ & \hline \end{aligned}$
75	$\begin{aligned} & \hline \text { JIS X0213: 1-87-91 } \\ & \text { JIS X0212: 43-80 } \\ & \text { JIS X0221: U+73D6 } \\ & \hline \end{aligned}$	81	$\begin{aligned} & \text { JIS X0213: } 1-88-10 \\ & \text { JIS X0212: 44-16 } \\ & \text { JIS X0221: U+742C } \end{aligned}$
	$\pm \frac{1}{5}$		下直
76	$\begin{array}{\|l\|} \hline \text { JIS X0213: } 1-88-4 \\ \text { JIS X0212: 44-09 } \\ \text { JIS X0221: U+741B } \\ \hline \end{array}$	82	$\begin{aligned} & \hline \text { JIS X0213: 2-80-80 } \\ & \text { JIS X0212: 44-22 } \\ & \text { JIS X0221: U+7439 } \\ & \hline \end{aligned}$
	F		

83	JIS X0213: 1-88-17 JIS X0212: 44-28 JIS X0221: U+744B		JIS X0213: 2-82-48 JIS X0212: 48-05 JIS X0221: U+78C8

95	ISO/IEC 10646: U+9FC5	101	$\begin{array}{\|l\|} \hline \text { JIS X0213: } 1-90-7 \\ \text { JIS X0212: 51-88 } \\ \text { JIS X0221: U+7D8B } \\ \hline \end{array}$
			$\frac{\sqrt{5}}{\pi / 5}$
96	$\begin{aligned} & \text { JIS X0212: 48-92 } \\ & \text { JIS X 0221: U+79DA } \end{aligned}$	102	$\begin{aligned} & \text { JIS X0212: 53-14 } \\ & \text { JIS X0221: U+7FA1 } \end{aligned}$
	Fr		
97	$\begin{aligned} & \text { JIS X0213: 2-82-92 } \\ & \text { JIS X0212: 49-19 } \\ & \text { JIS X0221: U+7A1E } \end{aligned}$	103	$\begin{aligned} & \text { JIS X0213: 1-90-46 } \\ & \text { JIS X0212: 54-12 } \\ & \text { JIS X0221: U+8118 } \\ & \hline \end{aligned}$
			$\underset{\square}{\vec{\square}}$
98	$\begin{aligned} & \hline \text { JIS X0213: 2-83-41 } \\ & \text { JIS X0221: U+7B7F } \end{aligned}$	104	$\begin{aligned} & \hline \text { JIS X0212: 54-21 } \\ & \text { JIS X0221: U+813A } \end{aligned}$
99	$\begin{array}{\|l\|} \hline \text { JIS X0213: 1-89-72 } \\ \text { JIS X0212: 50-77 } \\ \text { JIS X0221: U+7C31 } \\ \hline \end{array}$	105	ISO/IEC 10646: U+FA6D
100	$\begin{aligned} & \text { JIS X0213: 1-89-77 } \\ & \text { JIS X0221: U+4264 } \end{aligned}$	106	$\begin{array}{\|l\|} \hline \text { JIS X0213: } 1-90-67 \\ \text { JIS X0212: 55-37 } \\ \text { JIS X0221: U+82AE } \\ \hline \end{array}$

107	$\begin{aligned} & \text { JIS X0213: 1-19-75 } \\ & \text { JIS X0221: U+845B } \end{aligned}$	113	$\begin{aligned} & \hline \text { JIS X0213: 1-91-66 } \\ & \text { JIS X0221: U+87EC } \end{aligned}$
108	$\begin{aligned} & \text { JIS X0213: 2-86-53 } \\ & \text { JIS X0212: 57-01 } \\ & \text { JIS X 0221: U+84DC } \end{aligned}$	114	$\begin{aligned} & \text { JIS X0213: } 2-87-92 \\ & \text { JIS X0212: } 59-77 \\ & \text { JIS X0221: U+880B } \\ & \hline \end{aligned}$
			出思
109	$\begin{aligned} & \text { JIS X0213: 1-43-9 } \\ & \text { JIS X0221: U+84EC } \end{aligned}$	115	$\begin{aligned} & \text { JIS X0213: 1-91-77 } \\ & \text { JIS X0212: 60-51 } \\ & \text { JIS X0221: U+88F5 } \\ & \hline \end{aligned}$
110	$\begin{aligned} & \text { JIS X0213: 1-91-24 } \\ & \text { JIS X0212: 57-40 } \\ & \text { JIS X0221: U+8559 } \end{aligned}$	116	$\begin{aligned} & \hline \text { JIS X0221: U+89D2 } \\ & \text { (JIS X0213: 1-19-49の異体字) } \end{aligned}$
111	$\begin{aligned} & \text { JIS X0213: 1-91-34 } \\ & \text { JIS X0212: 57-83 } \\ & \text { JIS X0221: U+85CE } \end{aligned}$	117	$\begin{aligned} & \text { JIS X0213: 1-92-13 } \\ & \text { JIS X0212: 62-21 } \\ & \text { JIS X0221: U+8AF6 } \\ & \hline \end{aligned}$
112	$\begin{aligned} & \text { JIS X0213: 1-31-10 } \\ & \text { JIS X0221: U+8755 } \end{aligned}$	118	$\begin{aligned} & \hline \text { JIS X0213: 1-92-33 } \\ & \text { JIS X0212: 63-68 } \\ & \text { JIS X0221: U+8DCE } \end{aligned}$
			\square

119	$\begin{aligned} & \text { JIS X0213: } 1-36-52 \\ & \text { JIS X0221: U+8FBB } \end{aligned}$	125	$\begin{array}{\|l\|} \hline \text { JIS X0213: 2-90-56 } \\ \text { JIS X0212: 67-48 } \\ \text { JIS X0221: U+9233 } \\ \hline \end{array}$
			$\stackrel{H}{r \mid} \square$
120	$\begin{aligned} & \text { JIS X0212: 65-40 } \\ & \text { JIS X 0221: U+8FF6 } \end{aligned}$	126	$\begin{array}{\|l\|} \hline \text { JIS X0213: 1-93-14 } \\ \text { JIS X0212: 67-88 } \\ \text { JIS X0221: U+9288 } \\ \hline \end{array}$
121	$\begin{aligned} & \text { JIS X0213: 1-92-70 } \\ & \text { JIS X0212: 66-10 } \\ & \text { JIS X0221: U+90DD } \end{aligned}$	127	$\begin{array}{\|l\|} \hline \text { JIS X0213: 1-93-23 } \\ \text { JIS X0212: 68-62 } \\ \text { JIS X0221: U+9321 } \\ \hline \end{array}$
	$\frac{5}{\Gamma} T$		金
122	$\begin{aligned} & \text { JIS X0213: } 1-92-80 \\ & \text { JIS X0212: 66-39 } \\ & \text { JIS X0221: U+9127 } \end{aligned}$	128	$\begin{array}{\|l\|} \hline \text { JIS X0213: 1-93-25 } \\ \text { JIS X0212: 68-73 } \\ \text { JIS X0221: U+9348 } \\ \hline \end{array}$
123	$\begin{aligned} & \text { JIS X0213: } 1-37-2 \\ & \text { JIS X0221: U+912D } \end{aligned}$	129	JIS X0221：U＋9592
			曰曰
124	$\begin{aligned} & \hline \text { JIS X0212: } 66-88 \\ & \text { JIS X0221: U+91B2 } \end{aligned}$	130	$\begin{array}{\|l\|} \hline \text { JIS X0213: 1-93-66 } \\ \text { JIS X0212: 70-88 } \\ \text { JIS X0221: U+96DE } \\ \hline \end{array}$

Row	Cell	Graphic Symbol	Row	Cell	Graphic Symbol
85	1	1	85	48	48
	2	2		49	49
	3	3		50	50
	4	4		51	51
	5	5		52	52
	6	6		53	53
	7	7		54	54
	8	8		55	55
	9	9		56	56
	10	10		57	57
	11	11		58	58
	12	12		59	59
	13	13		60	60
	14	14		61	61
	15	15		62	62
	16	16		63	63
	17	17		64	64
	18	18		65	65
	19	19		66	66
	20	20		67	67
	21	21		68	68
	22	22		69	69
	23	23		70	70
	24	24		71	71
	25	25		72	72
	26	26		73	73
	27	27		74	74
	28	28		75	75
	29	29		76	76
	30	30		77	77
	31	31		78	78
	32	32		79	79
	33	33		80	80
	34	34		81	81
	35	35		82	82
	36	36		83	83
	37	37		84	84
	38	38		85	85
	39	39		86	86
	40	40		87	87
	41	41		88	88
	42	42		89	89
	43	43		90	90
	44	44		91	91
	45	45		92	92
	46	46		93	93
	47	47		94	94

Row	Cell	Graphic Symbol
86	1	95
	2	96
	3	97
	4	98
	5	99
	6	100
	7	101
	8	102
	9	103
	10	104
	11	105
	12	106
	13	107
	14	108
	15	109
	16	110
	17	111
	18	112
	19	113
	20	114
	21	115
	22	116
	23	117
	24	118
	25	119
	26	120
	27	121
	28	122
	29	123
	30	124
	31	125
	32	126
	33	127
	34	128
	35	129
	36	130
	37	131
	38	132
	39	133
	40	134
	41	135
	42	136
	43	137

Note:
When the JIS compatible Kanji Plane 1 set is operated, glyph of each Kanji character in Table 7-12 is the same as that in the JIS compatible Kanji Plane 1 set. Note that this does not imply that the added Kanji characters in Table 7-12 are not operated as added Kanji characters.

Table 7-12 Additional kanji characters that have identical characters in JIS compatible Kanji Plane 1

Additional Kanji Character in Row-Cell in the additional Kanji set	Characters in Row-Cell in the JIS compatible Kanji Plane 1 set
$85-52$	$1-22-91$
$85-91$	$1-21-32$
$86-13$	$1-19-75$
$86-15$	$1-43-9$
$86-18$	$1-31-10$
$86-25$	$1-36-52$
$86-29$	$1-37-2$
$86-40$	$1-27-10$

Table 7-13 Types and area of codes

Types	Code, etc.	Using condition		
		In combination by non-spacing character	In code sequence repeated by RPC	During starting till ending of CCC combination
Null	NUL	O	O	O
Active position control	APF, PAPF, APB, APD, APU, APR, APS, ACPS	-	-	-
Extension control	Control function of designation and invocation	O	O	O
Information separator	RS, US	-	-	-
Bell	BEL	-	-	-
Clear screen	CS	-	-	-
Cancel	CAN	-	-	-
Special function	SP, DEL	T	T	O
Colouring	BKF ~ WHF, COL	-	$\mathrm{O}^{* 1}$	-
Character size	SSZ ~ NSZ, SZX	-	O	-
Flashing	FLC	-	O	-
Conceal	CDC	-	$\mathrm{O}^{* 2}$	-
Pattern polarity	POL	-	O	-
Writing mode	WMM	-	-	-
Macro definition	MACRO	-	-	-
Highlighting control	HLC	-	O	-
Repeat character	RPC	-	-	-
Lining	STL, SPL	-	O	-
Time control	TIME	-	-	-
Set writing format	SWF	-	-	-
Character composition	CCC	T	T	-
Character set	Spacing character, mosaic A, B, external character	T	T	O
	Non-spacing character, mosaic C, D	O	O	O

Note 1: O: Usable, -: Not usable, T: Usable in termination
Note 2: In macro character, usable area is decided for developed code sequence.
Note 3: *1: Palette selection is excluded.
*2: Only for simple conceal

Table 7-14 Control function character set code table

	00	01	02	03	04	405	06	07	08	09	10	111	1213	314	15
0	NUL		SP						BKF	COL	10/0				
1									RDF	FLC					
2									GRF	CDC					
3									YLF	POL					
4									BLF	WMM					
5									MGF	MACRO					
6		PAPF							CNF						
7	BEL								WHF	HLC					
8	APB	CAN							SSZ	RPC					
9	APF	SS2							MSZ	SPL					
10	APD								NSZ	STL					
11	APU	ESC							SZX	CSI					
12	CS	APS													
13	APR	SS3								TIME					
14	LS1	RS													
15	LS0	US						DEL							15/15

Note 1: RS: Record separator, US: Unit separator
Note 2: Blanks of C0 area and C1 area are undefined.

Table 7-15 C0 control set

C0 control code	Control function	Function represented
NUL	Null	Control code, which can be added or deleted without effecting to information content.
BEL	Bell	Control code used when calling attention (alarm or signal)
APB	Active position backward	Active position goes backward along character path in the length of character path of character field. When the reference point of the character field exceeds the edge of display area by this movement, move in the opposite side of the display area along the character path of the active position, for active position up.
APF	Active position forward	Active position goes forward along character path in the length of character path of character field. When the reference point of the character field exceeds the edge of display area by this movement, move in the opposite side of the display area along the character path of the active position, for active position down.
APD	Active position down	Moves to next line along line direction in the length of line direction of the character field. When the reference point of the character field exceeds the edge of display area by this movement, move to the first line of the display area along the line direction.
APU	Active position up	Moves to the previous line along line direction in the length of line direction of the character field. When the reference point of the character field exceeds the edge of display area by this movement, move to the last line of the display area along the line direction.
APR	Active position return	Active position down is made, moving to the first position of the same line.
PAPF	Parameterized active position forward	Active position forward is made in specified times by parameter P1 (1 byte). Parameter P1 shall be within the range of $04 / 0$ to $07 / 15$ and time shall be specified within the range of 0 to 63 in binary value of 6 -bit from b6 to b1. (b8 and b7 are not used.)
APS	Active position set	Specified times of active position down is made by P1 (1 byte) of the first parameter in line direction length of character field from the first position of the first line of the display area. Then specified times of active position forward is made by the second parameter P2 (1 byte) in the character path length of character field. Each parameter shall be within the range of 04/0 to $07 / 15$ and specify time within the range of 0 to 63 in binary value of 6 bit from b 6 to b 1 . (b8 and b 7 are not used.)
CS	Clear screen	Display area of the display screen is erased.
CAN	Cancel	From the current active position to the end of the line is covered with background colour in the width of line direction in the current character field. Active position is not moved.
ESC	Escape	Code for code extension.
LS1	Locking shift 1	Code to invoke character code set.
LS0	Locking shift 0	Code to invoke character code set.
SS2	Single shift 2	Code to invoke character code set.
SS3	Single shift 3	Code to invoke character code set.
RS	Record separator	It is information division code and declares identification and introduction of data header.
US	Unit separator	It is information division code and declares identification and introduction of data unit.

Table 7-16 C1 control set

Cl control code	Function	Description	
BKF	BLACK FOREGROUN D	Foreground colour: black , CMLA: 0 (This indicates that foreground colour is set to black and colour map lower address (CMLA) specifying colouring value of the portrayal plane is set to 0 . Same as follows.)	
RDF	Red Foreground	Foreground colour: red	, CMLA: 1
GRF	Green Foreground	Foreground colour: green	, CMLA: 2
YLF	Yellow Foreground	Foreground colour: yellow	, CMLA: 3
BLF	Blue Foreground	Foreground colour: blue	, CMLA: 4
MGF	Magenta Foreground	Foreground colour: magenta	, CMLA: 5
CNF	Cyan Foreground	Foreground colour: cyan	, CMLA: 6
WHF	White Foreground	Foreground colour: white	, CMLA: 7
COL	Colour Controls	Colour control COL P1 (1 byte) Sets foreground colour, background colour, half foregrou background colour and CMLA by the parameter. Colour between foreground and background in gradation colour near to foreground colour is half foreground colou background colour is half background colour. COL 04/8: foreground colour - transparent COL 04/9: foreground colour - half intensity red (Half intensity: intensity reduced than the full intensity) COL 04/10: foreground colour - half intensity green COL 04/11: foreground colour - half intensity yellow COL 04/12: foreground colour - half intensity blue COL 04/13: foreground colour - half intensity magenta COL 04/14: foreground colour - half intensity cyan COL 04/15: foreground colour - half intensity white COL 05/0: background colour - black COL $05 / 1$: background colour - full intensity red COL $05 / 2$: background colour - full intensity green COL $05 / 3$: background colour - full intensity yellow COL 05/4: background colour - full intensity blue COL 05/5: background colour - full intensity magenta COL 05/6: background colour - full intensity cyan COL 05/7: background colour - full intensity white COL 05/8: background colour -transparent COL 05/9: background colour - half intensity red COL $05 / 10$: background colour - half intensity green COL $05 / 11$: background colour - half intensity yellow COL 05/12: background colour - half intensity blue COL $05 / 13$: background colour - half intensity magenta COL $05 / 14$: background colour - half intensity cyan COL 05/15: background colour - half intensity white COL 06/0: half foreground colour - black COL 06/1: half foreground colour - full intensity red COL 06/2: half foreground colour - full intensity green COL 06/3: half foreground colour - full intensity yellow COL 06/4: half foreground colour - full intensity blue	d colour, half nt is defined that and colour near to , CMLA 8 , CMLA 9 CMLA 10 , CMLA 11 CMLA 12 CMLA 13 , CMLA 14 , CMLA 15 , CMLA 0 , CMLA 1 CMLA 2 CMLA 3 , CMLA 4 CMLA 5 CMLA 6 CMLA 7 CMLA 8 CMLA 9 CMLA 10 CMLA 11 CMLA 12 CMLA 13 CMLA 14 CMLA 15 CMLA 0 CMLA 1 CMLA 2 CMLA 3 CMLA 4

Cl control code	Function	Description
		Palette control COL P1 (1 byte) P2 (1 byte) Specifies palette number by parameter COL 02/0 04/0 : Palette number 0 COL 02/0 04/1 : Palette number 1 COL 02/0 04/2 : Palette number 2 COL 02/0 04/3 : Palette number 3 COL 02/0 04/4 : Palette number 4 COL 02/0 04/5 : Palette number 5 COL 02/0 04/6 : Palette number 6 COL 02/0 04/7 : Palette number 7 COL 02/0 04/8 : Palette number 8 COL 0220 04/9 : Palette number 9 COL 02/0 04/10 : Palette number 10 COL 02/0 04/11 : Palette number 11 COL 02/0 04/12 : Palette number 12 COL 02/0 04/13 : Palette number 13 COL 0220 04/14 : Palette number 14 COL 02/0 04/15 : Palette number 15
POL	Pattern Polarity Controls	Specifies the pattern polarity of the character and the mosaic indicating the code after POL P1 (1 byte). When non-spacing character is included, it specifies the pattern polarity after composition. For intermediate colour in the gradation font, half foreground colour is converted to the half background colour and the half background colour is converted to half foreground colour. POL 04/0: normal polarity POL 04/1: inverted polarity 1 (Foreground and background colours are inverted in the whole display block) POL 04/2: inverted polarity 2

Cl control code	Function	Description
		(Foreground and background colours are inverted in the design frame)
SSZ	Small Size	Specifies the character size is small.
MSZ	Middle Size	Specifies the character size is middle.
NSZ	Normal Size	Specifies the character size is normal.
SZX	Character Size Controls	The character size is set in parameter P1 (1 byte). SZX 06/0: Tiny size SZX 04/1: Double height SZX 04/4: Double width SZX 04/5: Double height and width SZX 06/11 : Special 1 SZX 06/4: Special 2
FLC	Flashing control	Specifies the beginning and the end of flashing and the differences of the normal phase and the reverse phase by the parameter P1 (1 byte). FLC 04/0: Start normal phase flashing (This indicates the flashing which first starts in the same screen.) FLC 04/7: Start inverted phase flashing (This indicates the flashing of bright and dark phases are inverted to the normal phase flashing.) FLC 04/15: Stop flashing
CDC	Conceal Display Controls	Specifies the beginning and end of concealing and the type of concealing by the parameter. (1) Single concealment mode CDC P1 (1 byte) CDC 04/0: Start conceal CDC 04/15: Stop conceal For decoding and displaying in single concealment mode, the display function in the code line from the beginning and the end of concealing is taken over and the whole display block is in background colour. (2) Replacing conceal CDC P1 (1 byte) P2 (1 byte) CDC 02/0 04/0 : Simple replacing conceal start CDC 02/0 04/1 : Start 1st-step replacing conceal CDC 02/0 04/2 : Start 2nd-step replacing conceal CDC 02/0 04/3 : Start 3rd-step replacing conceal CDC 02/0 04/4 : Start 4th-step replacing conceal CDC 02/0 04/5 : Start 5th-step replacing conceal CDC 02/0 04/6 : Start 6th-step replacing conceal CDC 02/0 04/7 : Start 7th-step replacing conceal CDC 02/0 04/8 : Start 8th-step replacing conceal CDC 02/0 04/9 : Start 9th-step replacing conceal CDC 02/0 04/10 : Start 10th-step replacing conceal CDC 04/15 : Stop conceal (only P1 (1 byte)) For decoding and displaying the conceal status, the code line from the simple replacing conceals starts or from replacing conceal 1st step to replacing conceal 10 th step start to conceal end are omitted and succeeding of the display function of those code lines are not made. Canceling of conceal status is made by displaying decoded code lines of simple replacing conceal start or replacing conceal 1st step start and replacing conceal 10th step start to conceal end of the corresponding conceal sentence.
WMM	Writing Mode Modification	This Specifies the changing of the writing mode to the memory of display by parameter P1 (1 byte). For middle colour of gradation font, both set portions of half foreground colour and half background colours are to be treated as foreground colour. WMM 04/0: Mode to write portions set as foreground colour and background colour. WMM 04/4: Mode to write portion only set as foreground colour. WMM 04/5: Mode to write portion only set as background colour

C1 control code	Function	\quadDescription
		The time control designation is made by parameter P1 (1 byte) and P2 (1 byte) (1) Wait for process: TIME 02/0 P2 Processing of code as of this code is stopped for set duration by parameter P2. Parameter P2 is in the range of 04/0 to 07/15 and set by binary of 6 bit from b6 to b1. (b7 and b8 are not used.) Designating time should be 0.1 sec.
(5) Time control mode (TMD): TIME 02/8 P2		
TIME 02/8 04/0: Free		
TIME 02/8 04/1: Real		
TIME 02/8 04/2: Offset		
TIME 02/8 04/3: Unique		

C1 control code	Function	Description
SPL	Stop Lining	Underlining and mosaic division process is terminated.
HLC	HIGHLIGHTI NG CHARACTER BLOCK	Starting and ending of enclosure are set by parameter P1 (1 byte). HLC 04/0 : Enclosure ends HLC 04/1 : Enclosure 1 starts HLC 04/2 : Enclosure 2 starts HLC 04/3 : Enclosure 3 starts HLC 04/4 : Enclosure 4 starts HLC 04/5 : Enclosure 5 starts HLC 04/6 : Enclosure 6 starts HLC 04/7 : Enclosure 7 starts HLC 04/8 : Enclosure 8 starts HLC 04/9 : Enclosure 9 starts HLC 04/10 : Enclosure 10 starts HLC 04/11 : Enclosure 11 starts HLC 04/12 : Enclosure 12 starts HLC 04/13 : Enclosure 13 starts HLC 04/14 : Enclosure 14 starts HLC 04/15 : Enclosure 15 starts Enclosure command controls to add frame composed of the external four sides of the display block. Designation of the side to add the frame is made by b4 to b1 of parameter P1. B1 Specifies the side of the next line, $b 2$, the side of next character, $b 3$, the side of the previous line, and b 4 , the side of the previous character, respectively. When each of them are " 1 ", frame is added and when " 0 ", frame is not added. Line width of enclosure should be $1 / 24$ of the standard display block height and in case of horizontal writing form, the width should be $1 / 10$ of the height.
CSI	Control Sequence Introducer	Code for code system extension indicated in table 7-14.

Note 1: TMD, STM, DTM, OTM, PTM and ETM are added to TIME.

Table 7-17 Extension control code (CSI)

Control code	Function	DESCRIPTION
SWF	Set Writing Format	Select initialization with parameter P1 (1 or multiple codes) and initializing is done. Code sequence: CSI P11~P1i I1F CSI: 09/11 (control sequence introducer) P11~P1i: 03/0~03/9 (decimal number specifying format) I1: $\quad 02 / 0$ (intermediate character) F: $\quad 05 / 3$ (final character) *Decimal numbers specifying format are as follows. 0 : horizontal writing form in $\quad 1$: vertical writing form in standard density standard density 2: horizontal writing form in 3: vertical writing form in high high density density 4: horizontal writing form in 5: horizontal writing form in Western language 1920×1080 6: vertical writing form in 1920 7: horizontal writing form in 960 x 1080 x 540 8: vertical writing form in 960 x 9: horizontal writing form in 720 540 x 480 10: vertical writing form in 720 x 11: horizontal writing form in 480 1280×720 12: vertical writing form in 1280 x 720 The character display direction, character size, which is the unit of character numbers and lines, character numbers in a line and line numbers are given to set the character format by using four types of parameter, P1 (1 code), P2 (1 code), P3 (1 or multiple codes) and P4 (0 or multiple codes). Code sequence: CSI P1 I1 P2 I2 P31~P3i I3 P41~P4j I4F CSI: $\quad 09 / 11$ (control sequence introducer) P1: $\quad 03 / 8$ (horizontal writing form) P2: $\quad 03 / 0$ (small size) 03/1 (middle size) 03/3 (standard size) P31 ~P3i: $\quad 03 / 0 \sim 03 / 9$ (character numbers in one line in decimal) P41 ~P4j: 03/0~03/9 (line numbers in decimal) I1 ~ I3: 03/11 (middle character) I4: $\quad 02 / 0 \quad$ (middle character) F: $\quad 05 / 3$ (final character) *In P3 and P4, 03/0 to $03 / 9$ indicate 0 to 9 . *When the line number is not set, I3 and P4 can be omitted.
CCC	Composite Character Composition	```Composition command pattern of characters and mosaic etc. can be set by parameter P1 (1 code). Code sequence: CSI P1 I1 F CSI: \(\quad 09 / 11\) (control sequence introducer) P1: \(\quad 03 / 2\) OR composition starts 03/3 AND composition starts 03/4 XOR composition starts 03/0 composition ends \(02 / 0\) (middle character) 05/4 (final character)```
RCS	Raster Colour command	Raster colour is set by parameter P1 (1 or multiple codes). Code sequence: CSI P11~P1i IF CSI: $\quad 09 / 11$ (control sequence introducer)

Control code	Function	DESCRIPTION
		P11 ~P1i: $03 / 0 \sim 03 / 9$ (decimal number specifying colour) I: $02 / 0$ (middle character) F: $06 / 14$ (final character) *In P, 03/0 to $03 / 9$ indicates 0 to 9. *Decimal numbers specifying colour are as follows; 0: black $1:$ full intensity red 2: full intensity green $3:$ full intensity yellow 4: full intensity blue $5:$ full intensity magenta 6: full intensity cyan $7:$ full intensity white 8: transparent $9:$ half intensity red 10: half intensity green $11:$ half intensity yellow 12: half intensity blue $13:$ half intensity magenta 14: half intensity cyan $15:$ half intensity white
ACPS	Active Coordinate Position Set	Reference active point of character display block is set by coordinates measured by left upper corner of logical plane using parameter P1 (1 or multiple codes) and P2 (1 or multiple codes). Code sequence: CSI P11~P1i I1 P21~P2j I2 F CSI: $\quad 09 / 11$ (control sequence introducer) P11 ~P1i: $\quad 03 / 0 \sim 03 / 9$ (coordinates in horizontal direction) P21 ~P2j: 03/0~03/9 (coordinates in vertical direction) 1: 03/11 (middle character) I2: $\quad 02 / 0$ (middle character) F: $\quad 06 / 1$ (final character)
SDF	SET DISPLAY FORMAT	```Display dot number is set using parameter P1 (1 or multiple codes) and P2 (1 or multiple codes). Code sequence: CSI P11~P1i I1 P21~P2j I2 F CSI: \(\quad 09 / 11\) (control sequence introducer) P11~P1i: \(\quad 03 / 0 \sim 03 / 9\) (dot numbers in horizontal direction) P21~P2j: 03/0~03/9 (dot numbers in vertical direction) I1: \(\quad 03 / 11\) (middle character) I2: \(\quad 02 / 0\) (middle character) F: \(\quad 05 / 6\) (final character)```
SDP	Set Display Position	The display position of character display is set by position coordinates of left upper angle, using parameter P1 (1 or multiple codes) and P2 (1 or multiple codes). Code sequence: CSI P11~P1i I1 P21~P2j I2F CSI: $\quad 09 / 11$ (control sequence introducer) P11~P1i: $03 / 0 \sim 03 / 9$ (coordinates in horizontal direction) P21~P2j: 03/0~03/9 (coordinates in vertical direction) I1: $\quad 03 / 11$ (middle character) I2: $\quad 02 / 0$ (middle character) F: $\quad 05 / 15$ (final character)
SSM	Character composition dot designation	```Character dot is set using parameter P1 (1 or multiple codes) and P2 (1 or multiple codes). Code sequence: CSI P11~P1i I1 P21~P2j I2 F CSI: \(\quad 09 / 11\) (control sequence introducer) P11~P1i: \(\quad 03 / 0 \sim 03 / 9\) (dot numbers in horizontal direction) P21~P2j: 03/0~03/9 (dot numbers in vertical direction) I1: \(\quad 03 / 11\) (middle character) I2: \(\quad 02 / 0\) (middle character) F: \(\quad 05 / 7\) (final character)```

Control code	Function	DESCRIPTION
PLD	Partially Line Down	Active position moves towards the next line along line direction in halflength of line direction of the design frame. When reference point exceeds the display area by this movement, its PLD is ignored. Code sequence: CSI 5/11
PLU	Partialyl Line Up	Active position moves towards the previous line along line direction in halflength of line direction of the design frame. When reference point exceeds the display area by this movement, its PLU is ignored. Code sequence: CSI 5/12
SHS	Set Horizontal Spacing	Length of operation direction in the character field is set using parameter P1 (1 or multiple codes). By this operation, active point movement is made by the unit of length of frame design adding character spacing. Code sequence: CSI P11~P1iI1F CSI: \quad 09/11 (control sequence introducer) P11~P1i: 03/0-03/9 (Dot number in operation direction) I1: $\quad 02 / 0$ (middle character) F: $\quad 05 / 8$ (final character)
SVS	Set Vertical Spacing	Length of line direction of character field is set using parameter P1 (1 or multiple code). By this operation, the line movement transition's unit becomes the length of the space between the lines added to the frame design. Code sequence: CSI P11~P1I I1 F CSI: \quad 09/11 (control sequence introducer) P11~P1I: 03/0-03/9 (Dot number in operation direction) I1: $\quad 02 / 0$ (middle character) F: $\quad 05 / 9$ (final character)
GSM	Character deformation	```Deformation of a character is set using parameter P1 (1 or multiple codes) and P2 (1 or multiple codes). Code sequence: CSI P11~P1i I1 P21~P2j I2 F CSI: \(\quad 09 / 11\) (control sequence introducer) P11~P1i: \(\quad 03 / 0 \sim 03 / 9\) (magnification in line direction x 10) P21 ~P2j: 03/0~03/9 (magnification in operation direction x 10) I1: \(\quad 03 / 11\) (middle character) I2: \(\quad 02 / 0\) (middle character) F: \(\quad 04 / 2\) (final character)```
GAA	Colouring block	Colouring block of character is set using parameter P1 (1 code). CSI: $09 / 11$ (control sequence introducer) P1: $03 / 0$ whole display block $03 / 1$ design frame I1: $02 / 0$ (middle character) F: $05 / 13$ (final character)
SRC	Raster Colour Designation	

Control code	Function	DESCRIPTION
		 P21 P22: $03 / 0 \sim 03 / 9$ (upper 4 bit of colour map address) P23 P24: $03 / 0 \sim 03 / 9$ (lower 4 bit of colour map address) I2: $02 / 0$ (middle character) F: $05 / 14$ (final character) Relation of colour map and colouring is decided for each service.
TCC	Switch control	Specifies the switching of the subtitle by setting the switching mode on Parameter P1 (1 code) by setting the switch direction on Parameter P2 (1 code) and by Parameter P3 (one or multiple codes) Switching method of display of character groups composed by one character immediately after the switching control code or characters followed immediately after the switching control code is set. After control to a character or one character group is finished, it returns to display of normal overwriting condition. Code sequence: CSI P1 I1 P2 I2 P31~P3i I3 F CSI: $\quad 09 / 11$ (control sequence introducer) P1: $\quad 03 / 0 \sim 03 / 9$ switching mode designation 03/0: character group, cut 03/1: character group, dissolve 03/2: character group, wipe 03/3: character group, roll 03/4: character group, slide 03/6: each character, dissolve 03/8: each character, roll $03 / 0 \sim 03 / 3$ switching, direction 03/0: left to right 03/1: right to left 03/2: up to down 03/3: down to up P31 ~P3i: 03/0 $\sim 03 / 9$ switching time designation (decimal in 0.1 sec . unit) I1 ~ I2: $\quad 03 / 11$ (middle character) I3: $\quad 02 / 0$ (middle character) F: $\quad 06 / 2$ (final character) *In P3, $03 / 0$ to $03 / 9$ indicates 0 to 9 .
CFS	Character Font Set	The character font is set using parameter P1 (1 or multiple codes) Code sequence CSI P11~P1i I1 F CSI: $\quad 09 / 11$ (control sequence introducer) P11 ~P1i: $\quad 03 / 0 \sim 03 / 9$ font designation (decimal) I1: $\quad 02 / 0$ (middle character) F: $\quad 06 / 5$ (final character) When font designation is 0 , font is not to be set. Font designation number and actual font correspondence is specified differently in operational guideline.
ORN	Ornament Control	

Control code	Function	DESCRIPTION
		Except for hemming and shade, I1, P2 can be omitted. Relation of colour map and colouring is decided in each service.
MDF	Font	The Character is set using parameter P1 (1 code) Code sequence: CSI P1 I1 F CSI: $\quad 09 / 11$ (control sequence introducer) P1: $\quad 03 / 0:$ standard I1: $03 / 1:$ bold character F: $03 / 2:$ slanted character Fharacter field is deformed by character designation. In this case active position should not be changed.
XCS	External Character Set	When DRCS or third-level characters or forth-level characters cannot be displayed, following defined code sequence is used to display for substitution. Code sequence: CSI P1 I1 F It is placed immediately after DRCS or third or fourth level character code. When DRCS, third or fourth level character is displayed correctly, code lines from the definition start to definition end are ignored.
PRA	Built-in sound replay	Set built-in sound is replayed using parameter P1 (1 or multiple codes). Code sequence: CSI P1~P1i I1 F CSI: $\quad 09 / 11$ (control sequence introducer) PI1 \sim P1i: $\quad 03 / 0 \sim 03 / 9$ built-in sound designation (decimal) I1: $\quad 02 / 0$ (middle character) F: $\quad 06 / 8$ (final character) Built-in sound played back when built-in sound designation is 0 should be the same as that of BEL of C0 control code.
ACS	ALTERNATIVE CHARACTER SET	

Control code	Function	DESCRIPTION
UED	Invisible data Embedded control	For the purpose of adding a semantic content to a character string of caption, it is embedded invisible data code string that does not appear in the normal caption display system. In this control code, it is possible to specify this invisible data code string, and to specify the caption display string invisible data link. Code sequence : CSI P1 I1 F
		CSI : $09 / 11$ (Control sequence introducer)
		P1 : $03 / 0$: Start of invisible embedded data code string
		03/1 : End of invisible embedded data code string
		03/2 : Start of caption display string invisible data link
		03/3 : End of caption display string invisible data link
		I1 : $02 / 0$ (Intermediate character)
		F : 06/10 (Termination character)
		Between $<03 / 0\rangle$ and $<03 / 1>$ section, invisible data, that is, code-string skipped in normal caption display system, not displayed on the screen. Embedded character string can be arranged any string except the control code $\mathrm{C} 0, \mathrm{C} 1$. Also, if the character string associated with the non-visible data were in caption text, it is possible to place the invisible data just before the related character string, the related character string can be specified by enclosing $<03 / 2>$ and $<03 / 3>$. In normal caption display system, these code string of $<03 / 2>$ and $<03 / 3>$, are skipped.
SCS	Skip Character Set	Extended control code immediately after SCS can not be process by receiver, this control code must be skipped to final character of this control code. Code sequence: CSI F CSI: $\quad 09 / 11$ (control sequence introducer) F: $\quad 06 / 15$ (final character)

Table 7-18 Default macro code strings

Macro code	Default macro code string
6/0	ESC 02/4 F1 ESC 02/9 F2 ESC 02/10 F3 ESC 02/11 02/0 F9 LS0 ESC 07/13
6/1	ESC 02/4 F1 ESC 02/9 F4 ESC 02/10 F3 ESC 02/11 02/0 F9 LS0 ESC 07/13
6/2	ESC 02/4 F1 ESC 02/9 02/0 F10 ESC 02/10 F3 ESC 02/11 02/0 F9 LS0 ESC 07/13
6/3	ESC 02/8 F5 ESC 02/9 F7 ESC 02/10 F8 ESC 02/11 02/0 F9 LS0 ESC 07/13
6/4	ESC 02/8 F5 ESC 02/9 F6 ESC 02/10 F8 ESC 02/11 02/0 F9 LS0 ESC 07/13
6/5	ESC 02/8 F5 ESC 02/9 02/0 F10 ESC 02/10 F8 ESC 02/11 02/0 F9 LS0 ESC 07/13
6/6	ESC 02/8 02/0 F10 ESC 02/9 02/0 F11 ESC 02/10 02/0 F12 ESC 02/11 02/0 F9 LS0 ESC 07/13
6/7	ESC 02/8 02/0 F13 ESC 02/9 02/0 F14 ESC 02/10 02/0 F15 ESC 02/11 02/0 F9 LS0 ESC 07/13
6/8	ESC 02/8 02/0 F16 ESC 02/9 02/0 F17 ESC 02/10 02/0 F18 ESC 02/11 02/0 F9 LS0 ESC 07/13
6/9	ESC 02/8 02/0 F19 ESC 02/9 02/0 F20 ESC 02/10 02/0 F21 ESC 02/11 02/0 F9 LS0 ESC 07/13
6/10	ESC 02/8 02/0 F22 ESC 02/9 02/0 F23 ESC 02/10 02/0 F24 ESC 02/11 02/0 F9 LS0 ESC 07/13
6/11	ESC 02/4 F1 ESC 02/9 02/0 F11 ESC 02/10 F3 ESC 02/11 02/0 F9 LS0 ESC 07/13
6/12	ESC 02/4 F1 ESC 02/9 02/0 F12 ESC 02/10 F3 ESC 02/11 02/0 F9 LS0 ESC 07/13
6/13	ESC 02/4 F1 ESC 02/9 02/0 F13 ESC 02/10 F3 ESC 02/11 02/0 F9 LS0 ESC 07/13
6/14	ESC 02/8 F4 ESC 02/9 F3 ESC 02/10 F2 ESC 02/11 02/0 F9 LS0 ESC 07/13
6/15	ESC 02/8 F2 ESC 02/9 F5 ESC 02/10 02/0 F10 ESC 02/11 02/0 F9 LS0 ESC 07/13
Note 1:	F1: Kanji F2: Alphanumeric F3: Hiragana F4: Katakana
	F5: Mosaic A F6: Mosaic B F7: Mosaic C F8: Mosaic D
	F9: Macro F10: DRCS-1 F11: DRCS-2
	F23: DRCS-14 F24: DRCS-15

Note 2: When macro code is $2 / 1$ to $5 / 15$ and $7 / 0$ to $7 / 14$, default macro code string should be left blank.

7.2 Universal multi-octet coded Character Set

The Character coding of Universal multi-octet coded Character Set (UCS) shall be in accordance with ISO/IEC 10646:2014.

7.2.1 Classes and coding structure of character code set

7.2.1.1 Coding architecture and coding structure

The coding architecture shall be based on the 2 -octet format and the coding architecture shall be in compliance with ISO/IEC 10646:2014 Information technology -- Universal Coded Character Set (UCS). When other characters than those in the Basic Multilingual Plane (BMP) are needed for reference, UTF-16 or UCS-4 should be used. The coded character set that is valid for this standard consists of the coded character set defined in ISO/IEC 10646:2014. However, subset defined below can be used instead of support of whole characters define in ISO/IEC 10646:2014. Which subset use, and the conversion of a subset and other systems (other subsets, etc.) to be used shall be determined in operation.

7.2.1.1.1 Basic character set

The basic character set defines the set that consists of the Kanji set, alphanumerical set, Hiragana set, Katakana set and additional symbols set defined in Clause 7.1.1.2 ${ }^{2}$. To reference any character belonging to Rows 90 to 94 in the Kanji set, the corresponding character defined in the additional symbols set should be used. For more code values of the characters in the Kanji set, Hiragana set, and Katakana set, refer to JIS X 0213:2004. For code values of the alphanumerical set, refer to JIS X 0201-1997. For code values of the additional symbols set, refer to Tables 7-19

Table 7-19 Code Values for Added Symbols Set

$\begin{array}{\|c} \text { Cell } \\ \text { Row } \\ \hline \end{array}$	1	2	3	4	5	6	7	8	9	10	11	12
85	3402	E081	4EFD	4EFF	4F9A	4FC9	509C	511E	51BC	351F	5307	5361
86	9FC5	79DA	7A1E	7B7F	7C31	4264	7D8B	7FA1	8118	813A	FA6D	82 AE
87-89												
90	26 CC	26CD	2757	26CF	26D0	26D1		26D2	26D5	26D3	26D4	
91	26E3	2B56	2B57	2B58	2B59	2613	328B	3012	26E8	3246	3245	26E9
92	27A1	2B05	2B06	2B07	2B2F	2B2E	E28B	E28C	E28D	E28E	33A1	33A5
93	322A	322B	322C	322D	322E	322F	3230	3237	337E	337D	337C	337B
94	2160	2161	2162	2163	2164	2165	2166	2167	2168	2169	216A	216B

[^1]| Cell
 Row | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 85 | 536 C | 8 A 79 | E 084 | 544 D | 5496 | 549 C | 54 A 9 | 550 E | 554 A | 5672 | 56 E 4 | 5733 |
| 86 | 845 B | 84 DC | 84 EC | 8559 | 85 CE | 8755 | 87 EC | 880 B | 88 F 5 | 89 D 2 | 8 AF 6 | 8 DCE |
| $87-89$ | | | | | | | | | | | | |
| 90 | | | | E0D 8 | E0D9 | | | 26 D 6 | 26 D 7 | 26 D 8 | 26 D 9 | 26 DA |
| 91 | 0 FD 6 | 26 EA | 26 EB | 26 EC | 2668 | 26 ED | 26 EE | 26 EF | 2693 | 2708 | 26 F 0 | 26 F 1 |
| 92 | 339 D | 33 A 0 | 33 A 4 | E28F | 2488 | 2489 | 248 A | 248 B | 248 C | 248 D | 248 E | 248 F |
| 93 | 2116 | 2121 | 3036 | 26 BE | E2CD | E 2 CE | E 2 CF | E2D0 | E2D1 | E2D2 | E2D3 | E2D4 |
| 94 | 2470 | 2471 | 2472 | 2473 | 2474 | 2475 | 2476 | 2477 | 2478 | 2479 | 247 A | 247 B |

Cell Row	25	26	27	28	29	30	31	32	33	34	35	36
85	5734	FA10	5880	59 E 4	5 A 23	5 A 55	5 BEC	FA11	37 E 2	5 EAC	5 F 34	5 F 45
86	8 FBB	8 FF 6	90 DD	9127	912 D	91 B 2	9233	9288	9321	9348	9592	96 DE
$87-89$												
90	26 DB	26 DC	26 DD	26 DE	26 DF	26 E 0	26 E 1	2 B 55	3248	3249	$324 A$	324 B
91	26 F 2	26F3	26 F 4	26 F 5	E1C3	24B9	24 C 8	26 F 6	E1C7	E1C8	E1C9	E1CA
92	2490	E290	E291	E292	E293	E294	E295	E296	E297	E298	E299	E29A
93	E2D5	E2D6	E2D7	E2D8	E2D9	E2DA	E2DB	E2DC	E2DD	E2DE	E2DF	E2E0
94	$247 C$	247D	247E	247F	3251	3252	3253	3254	E383	E384	E385	E386

Cell Row	37	38	39	40	41	42	43	44	45	46	47	48
85	5 FB 7	6017	FA6B	6130	6624	66 C 8	66 D 9	66 FA	66 FB	6852	9 FC 4	6911
86	9903	9940	9AD9	9BD6	9DD7	9EB4	9 EB 5					
$87-89$												
90	324 C	324 D	324 E	324 F					2491	2492	2493	E0F8
91	E1CB	26F7	26F8	26F9	26FA	E1D0	260 E	26 FB	26 FC	26 FD	26 FE	E1D6
92	E29B	E29C	E29D	E29E	E29F	3233	3236	3232	3231	3239	3244	25 B 6
93	E2E1	E2E2	2113	338 F	3390	33 CA	339 E	33 A 2	3371			00 BD
94	E387	E388	E389	E38A	E38B	E38C	E38D	E38E	E38F	E390	E391	E392

Cell Row	49	50	51	52	53	54	55	56	57	58	59	60
85	$693 B$	6 A45	6 A 91	6ADB	E08A	E08B	E08C	6 BF 1	6 CE 0	6D2E	FA45	6 DBF
86												
$87-89$												
90	E0F9	E0FA	E0FB	E0FC	E0FD	E0FE	E0FF	E180	E181	E182	E183	E184
91	$26 F F$											
92	$25 C 0$	3016	3017	$27 D 0$	$00 B 2$	$00 B 3$	E2A4	E2A5	E2A6	E2A7	E2A8	E2A9
93	2189	2153	2154	$00 B C$	$00 B E$	2155	2156	2157	2158	2159	$215 A$	2150
94	E393	E394	E395	E396	E397	E398	E399	E39A	E39B	E39C	3255	3256

Cell Row	61	62	63	64	65	66	67	68	69	70	71	72
85	6DCA	6DF8	FA46	6F5E	6FF9	7064	FA6C	E08E	7147	71 C 1	7200	739 F
86												
$87-89$												
90	E185	E186	E187	2B1B	2 B 24	E18A	E18B	E18C	E18D	E18E	26 BF	E190
91												
92	E2AA	E2AB	E2AC	E2AD	E2AE	E2AF	E2B0	E2B1	E2B2	E2B3	E2B4	E2B5
93	$215 B$	2151	2152	2600	2601	2602	26 C 4	2616	2617	26 C 9	26 CA	2666
94	3257	3258	3259	$325 A$	2460	2461	2462	2463	2464	2465	2466	2467

Cell Row	73	74	75	76	77	78	79	80	81	82	83	84
85	$73 A 8$	73 C 9	73 D 6	741 B	7421	FA4A	7426	742 A	742 C	7439	744 B	3EDA
86												
$87-89$												
90	E191	E192	E193	E194	E195	E196	E197	E198	E199	E19A	3299	E19C
91												
92	E2B6	E2B7	E2B8	E2B9	E2BA	E2BB	E2BC	E2BD	E2BE	E2BF	E2C0	E2C1
93	2665	2663	2660	26CB	2A00	203C	2049	26 C 5	2614	26 C 6	2603	26 C 7
94	2468	2469	246 A	246B	246C	246D	246 E	246 F	2776	2777	2778	2779

Cell Row	85	86	87	88	89	90	91	92	93	94		
85	7575	7581	7772	4093	78 C 8	78 E 0	7947	79 AE	9 FC 6	4103		
86												
$87-89$												
90												
91												
92	E2C2	E2C3	E2C6	3247	E2C4	E2C5	$213 B$					
93	26A1	26 C 8		269 E	269 F	266 C	E2FB					
94	277A	277 B	277 C	277 D	277 E	277 F	24 EB	24 EC	325 B			

It is noted that, in Table $7-19$, there are characters that are duplicate encoded with the other code points (This is due to historical reasons). These duplicate encoded characters ensure the round-trip conversion between UCS and other coding. Such characters are listed below.

- 90-58(U+E182) and 93-30(U+E2DA)
- 91-43(U+260E) and 93-91(U+E2FB) B
- 92-07(U+E28B) and 39-15(U+5E74) Year
- 92-08(U+E28C) and 23-78(U+6708) Month
- 92-09(U+E28D) and 38-92(U+65E5) Date
- 92-10(U+E28E) and 17-63(U+5186) Money

It is also noted that there are characters of which code points are incompatible with those in version 6.1 or earlier of this standard. Table 7-20 lists such characters in additional symbol set defined in version 6.1 of this standard. The code points defined in "Modification to Table 7-19 to make Additional Symbols Set to comply with JIS X0213:2004 (Table 7-20)" in version 6.1 is applicable without any changes.

Table 7-20 Characters having different code points from those in version 6.1 of this standard

Row-Cell	Code points in STD-B24 V6.1		Table7-19 in this version
	Table 7-19	Table 7-20	
$85-01$	E080	3402	$351 F$
$85-10$	E082	$351 F$	F

90-22	E0DE	N/A	26D8
90-23	E0DF	N/A	26D9
90-24	E0E0	N/A	26DA
90-25	E0E1	N/A	26DB
90-26	E0E2	N/A	26DC
90-27	E0E3	N/A	26DD
90-28	E0E4	N/A	26DE
90-29	E0E5	N/A	26DF
90-30	E0E6	N/A	26E0
90-31	E0E7	N/A	26E1
90-32	E0E8	N/A	2B55
90-33	E0E9	N/A	3248
90-34	E0EA	N/A	3249
90-35	E0EB	N/A	324A
90-36	E0EC	N/A	324B
90-37	E0ED	N/A	324 C
90-38	E0EE	N/A	324D
90-39	E0EF	N/A	324 E
90-40	E0F0	N/A	324 F
90-45	E0F5	N/A	2491
90-46	E0F6	N/A	2492
90-47	E0F7	N/A	2493
90-64	E188	N/A	2B1B
90-65	E189	N/A	2B24
90-71	E18F	N/A	26BF
90-83	E19B	N/A	3299
91-01	E1A7	N/A	26E3
91-02	E1A8	N/A	2B56
91-03	E1A9	N/A	2B57
91-04	E1AA	N/A	2B58
91-05	E1AB	N/A	2B59
91-06	E1AC	N/A	2613
91-07	E1AD	N/A	328B
91-08	E1AE	N/A	3012
91-09	E1AF	N/A	26E8
91-10	E1B0	N/A	3246

91-11	E1B1	N/A	3245
91-12	E1B2	N/A	26E9
91-13	E1B3	N/A	0FD6
91-14	E1B4	N/A	26EA
91-15	E1B5	N/A	26EB
91-16	E1B6	N/A	26EC
91-17	E1B7	N/A	2668
91-18	E1B8	N/A	26ED
91-19	E1B9	N/A	26EE
91-20	E1BA	N/A	26EF
91-21	E1BB	N/A	2693
91-22	E1BC	N/A	2708
91-23	E1BD	N/A	26F0
91-24	E1BE	N/A	26F1
91-25	E1BF	N/A	26F2
91-26	E1C0	N/A	26F3
91-27	E1C1	N/A	26F4
91-28	E1C2	N/A	26F5
91-30	E1C4	N/A	24B9
91-31	E1C5	N/A	24C8
91-32	E1C6	N/A	26F6
91-38	E1CC	N/A	26F7
91-39	E1CD	N/A	26F8
91-40	E1CE	N/A	26F9
91-41	E1CF	N/A	26FA
91-43	E1D1	N/A	260 E
91-44	E1D2	N/A	26FB
91-45	E1D3	N/A	26FC
91-46	E1D4	N/A	26FD
91-47	E1D5	N/A	26FE
91-49	E1D7	N/A	26FF
92-01	E285	N/A	27A1
92-02	E286	N/A	2B05
92-03	E287	N/A	2B06
92-04	E288	N/A	2B07
92-05	E289	N/A	2B2F

92-06	E28A	N/A	2B2E
92-47	E2A0	N/A	3244
92-52	E2A1	N/A	27D0
92-53	E2A2	N/A	00B2
92-54	E2A3	N/A	00B3
92-86	00AE	E3A7	E2C3
92-87	00A9	E3A8	E2C6
92-88	E2C3	N/A	3247
92-91	E2C6	N/A	213B
93-13	E2CA	N/A	2116
93-14	E2CB	N/A	2121
93-16	E2CC	N/A	26BE
93-49	E2E5	N/A	2189
93-60	E2E6	N/A	2150
93-62	E2E7	N/A	2151
93-63	E2E8	N/A	2152
93-67	E2E9	N/A	26C4
93-68	E2EA	N/A	2616
93-69	E2EB	N/A	2617
93-70	E2EC	N/A	26C9
93-71	E2ED	N/A	26 CA
93-76	E2EE	N/A	26 CB
93-77	E2EF	N/A	2A00
93-79	E2F0	2049	2049
93-80	E2F1	N/A	26C5
93-81	E2F2	N/A	2614
93-82	E2F3	N/A	26C6
93-83	E2F4	N/A	2603
93-84	E2F5	N/A	26C7
93-85	E2F6	N/A	26A1
93-86	E2F7	N/A	26C8
93-88	E2F9	N/A	269E
93-89	E2FA	N/A	269F
94-29	E2FF	3251	3251
94-30	E380	3252	3252
94-31	E381	3253	3253

$94-32$	E382	3254	3254
$94-59$	E39D	3255	3255
$94-60$	E39E	3256	3256
$94-61$	E39F	3257	3257
$94-62$	E3A0	3258	3258
$94-63$	E3A1	3259	3259
$94-64$	E2A2	$325 A$	$325 A$
$94-91$	E3A3	24 EB	24 EB
$94-92$	E3A4	24 EC	24 EC
$94-93$	E3A5	$325 B$	$325 B$

7.2.1.1.2 JIS X0213 compliant set

Repertoire of this set consists of JIS X0213:2004, JIS X0201-1997 and those defined in clause 7.1.1.2.

7.2.1.1.3 BMP set

This character set is to handle the JIS X0213 compliant set specified in clause 7.2.1.1.2 within the Basic Multilingual Plane (BMP). For this purpose, characters in Plane 1 and 2, are re-allocated to the Private Use Area (PUA).Table 7-21 shows Kanji allocated in these Planes in JIS X0213:2004 with their reassigned values in PUA.

Table 7-21 Kanji reassigned to PUA

$\begin{aligned} & \text { Plane- } \\ & \text { row-cell } \end{aligned}$	Code point	$\begin{aligned} & \text { Plane- } \\ & \text { row-cell } \end{aligned}$	Code point	Plane-row-cell	Code point	Plane-row-cell	Code point
1-14-2	E760	2-3-17	E784	2-8-27	E7A9	2-14-54	E7CE
1-15-34	E761	2-3-18	E785	2-8-31	E7AA	2-14-55	E7CF
1-15-44	E762	2-3-24	E786	2-8-32	E7AB	2-14-59	E7D0
1-15-64	E763	2-3-31	E787	2-8-37	E7AC	2-14-87	E7D1
1-15-91	E764	2-3-33	E788	2-8-40	E7AD	2-14-88	E7D2
1-47-52	E7F4	2-3-42	E789	2-8-42	E7AE	2-15-10	E7D3
1-47-67	E765	2-3-50	E78A	2-8-43	E7AF	2-15-31	E7D4
1-47-78	E766	2-3-51	E78B	2-8-59	E7B0	2-15-32	E7D5
1-85-26	E767	2-3-57	E78C	2-8-70	E7B1	2-15-34	E7D6
1-85-82	E768	2-3-60	E78D	2-8-76	E7B2	2-15-35	E7D7
1-86-9	E769	2-3-87	E78E	2-12-2	E7B3	2-15-46	E7D8
1-86-18	E76A	2-4-10	E78F	2-12-11	E7B4	2-15-57	E7D9
1-86-64	E76B	2-4-17	E790	2-12-16	E7B5	2-15-65	E7DA
1-87-76	E76C	2-4-18	E791	2-12-48	E7B6	2-15-73	E7DB
1-88-94	E76D	2-4-26	E792	2-12-69	E7B7	2-15-74	E7DC
1-89-9	E76E	2-4-29	E793	2-12-77	E7B8	2-15-80	E7DD
1-89-39	E76F	2-4-57	E794	2-12-82	E7B9	2-15-85	E7DE
1-89-52	E770	2-4-60	E795	2-13-4	E7BA	2-78-3	E7DF
1-89-78	E771	2-4-62	E796	2-13-9	E7BB	2-78-20	E7E0
1-90-61	E772	2-4-67	E797	2-13-10	E7BC	2-78-41	E7E1
1-91-19	E773	2-4-74	E798	2-13-18	E7BD	2-78-60	E7E2
1-91-41	E774	2-4-75	E799	2-13-20	E7BE	2-78-62	E7E3
1-91-76	E775	2-4-82	E79A	2-13-21	E7BF	2-78-63	E7E4
1-92-41	E776	2-4-84	E79B	2-13-25	E7C0	2-78-64	E7E5
1-92-49	E777	2-4-85	E79C	2-13-54	E7C1	2-79-18	E7E6
1-94-70	E778	2-5-5	E79D	2-13-93	E7C2	2-79-39	E7E7
2-1-1	E779	2-5-18	E79E	2-14-3	E7C3	2-79-45	E7E8
2-1-11	E77A	2-5-30	E79F	2-14-4	E7C4	2-79-65	E7E9
2-1-14	E77B	2-5-36	E7A0	2-14-26	E7C5	2-79-68	E7EA
2-1-22	E77C	2-5-39	E7A1	2-14-28	E7C6	2-80-2	E7EB
2-1-38	E77D	2-5-53	E7A2	2-14-29	E7C7	2-80-19	E7EC
2-1-80	E77E	2-5-54	E7A3	2-14-34	E7C8	2-80-25	E7ED
2-1-87	E77F	2-5-94	E7A4	2-14-35	E7C9	2-80-51	E7EE

$2-1-89$	E780	$2-8-16$	E7A5	$2-14-36$	E7CA	$2-80-91$	E7EF
$2-3-2$	E781	$2-8-23$	E7A6	$2-14-39$	E7CB	$2-81-14$	E7F0
$2-3-5$	E782	$2-8-24$	E7A7	$2-14-41$	E7CC	$2-81-16$	E7F1
$2-3-7$	E783	$2-8-26$	E7A8	$2-14-53$	E7CD	$2-81-21$	E7F2

Plane-row-cell	Code point	$\begin{aligned} & \text { Plane- } \\ & \text { row-cell } \end{aligned}$	Code point	$\begin{gathered} \text { Plane- } \\ \text { row-cell } \end{gathered}$	Code point	Plane-row-cell	Code point
2-81-36	E7F3	2-84-34	E81A	2-88-34	E841	2-91-58	E868
2-81-61	E7F4	2-84-47	E81B	2-88-54	E842	2-91-60	E869
2-81-65	E7F5	2-84-73	E81C	2-88-67	E843	2-91-61	E86A
2-81-70	E7F6	2-84-75	E81D	2-88-87	E844	2-91-65	E86B
2-81-73	E7F7	2-84-82	E81E	2-88-89	E845	2-91-69	E86C
2-81-85	E7F8	2-84-85	E81F	2-88-90	E846	2-91-71	E86D
2-81-87	E7F9	2-84-89	E820	2-89-5	E847	2-91-73	E86E
2-81-90	E7FA	2-85-21	E821	2-89-15	E848	2-91-81	E86F
2-82-1	E7FB	2-85-26	E822	2-89-18	E849	2-92-2	E870
2-82-3	E7FC	2-85-38	E823	2-89-25	E84A	2-92-3	E871
2-82-4	E7FD	2-85-54	E824	2-89-34	E84B	2-92-24	E872
2-82-8	E7FE	2-85-56	E825	2-89-40	E84C	2-92-34	E873
2-82-12	E7FF	2-85-58	E826	2-89-57	E84D	2-92-44	E874
2-82-29	E800	2-85-61	E827	2-89-62	E84E	2-92-54	E875
2-82-40	E801	2-85-63	E828	2-89-70	E84F	2-92-57	E876
2-82-59	E802	2-85-67	E829	2-89-75	E850	2-92-61	E877
2-82-85	E803	2-85-74	E82A	2-89-90	E851	2-92-86	E878
2-82-86	E804	2-85-80	E82B	2-89-94	E852	2-93-12	E879
2-83-18	E805	2-85-83	E82C	2-90-1	E853	2-93-43	E87A
2-83-29	E806	2-86-36	E82D	2-90-12	E854	2-93-44	E87B
2-83-30	E807	2-86-46	E82E	2-90-15	E855	2-93-57	E87C
2-83-32	E808	2-86-61	E82F	2-90-47	E856	2-93-59	E87D
2-83-50	E809	2-86-85	E830	2-90-48	E857	2-93-61	E87E
2-83-61	E80A	2-86-94	E831	2-90-55	E858	2-93-71	E87F
2-83-62	E80B	2-87-1	E832	2-90-69	E859	2-93-77	E880
2-83-83	E80C	2-87-2	E833	2-90-70	E85A	2-93-80	E881
2-83-84	E80D	2-87-19	E834	2-90-81	E85B	2-94-5	E882
2-83-85	E80E	2-87-22	E835	2-90-82	E85C	2-94-9	E883
2-83-87	E80F	2-87-68	E836	2-90-94	E85D	2-94-11	E884

$2-83-91$	E810	$2-87-69$	E837	$2-91-1$	E85E	$2-94-18$	E885
$2-83-93$	E811	$2-87-75$	E838	$2-91-12$	E85F	$2-94-21$	E886
$2-84-2$	E812	$2-87-78$	E839	$2-91-13$	E860	$2-94-51$	E887
$2-84-4$	E813	$2-87-83$	E83A	$2-91-22$	E861	$2-94-56$	E888
$2-84-7$	E814	$2-88-9$	E83B	$2-91-23$	E862	$2-94-58$	E889
$2-84-14$	E815	$2-88-10$	E83C	$2-91-29$	E863	$2-94-78$	E88A
$2-84-15$	E816	$2-88-12$	E83D	$2-91-30$	E864	$2-94-80$	E88B
$2-84-20$	E817	$2-88-20$	E83E	$2-91-46$	E865	$2-94-82$	E88C
$2-84-21$	E818	$2-88-28$	E83F	$2-91-47$	E866	$2-94-86$	E88D
$2-84-29$	E819	$2-88-30$	E840	$2-91-55$	E867		

7.2.1.2 Supplemental characters (Gaiji)

Any Gaiji character code shall be a 2 -octet code.
The Gaiji character code set shall be the DRCS- 0 set. The DRCS- 0 set is defined as a table consisting of 2-octet codes, representing 3328 characters from Row EC, Cell 00 to Row F8, Cell FF.
DRCS pattern data shall be coded in compliance with Annex D Coding of DRCS pattern data.

7.2.2 Coding of control code

Way of presentation of characters is controlled by using the C0 and C1 control code defined in Table 7-14, Table 7-15, and Table 7-16.

7.2.2.1 C0 control code

Structure and function of C0 control code are defined in Table 7-14 and Table 7-15 respectively. Parameters of the control code are transmitted immediately after each code if needed. When UCS is used, LS0, LS1, SS2, SS3 are not used.

7.2.2.2 C1 control code

Structure and function of C 1 control code are defined in Table 7-14 and Table 7-16 respectively. Parameters of the control code are transmitted immediately after each code if needed.

7.2.2.3 CSI

Control sequence led by CSI (Control sequence introducer) in the C 1 control code is defined in Table 7-17.

7.2.3 Character encoding scheme

Character encoding scheme when using the UCS character set shall be as follows.
UTF-8 and UTF-16 specified in ISO/IEC 10646:2014 should be employed for transmission.

7.2.3.1 UTF-16

When transmitting data by UTF-16, byte order is the high byte first. That is, the big endian format shall be used. In order to indicate the encoding scheme, it should not be omit byte order mark. When transmitting a control code by UTF- $16, \mathrm{C} 0$ control code value of the code from 0×00 to $0 \times 1 \mathrm{~F}$ is transmitted using from $(00000000)(00000000)[0000]$ to $(00000000)(00011111)[001 \mathrm{~F}]$. C1 control code value of the code from 0×80 to $0 \times 9 \mathrm{~F}$ is transmitted using from $(00000000)(10000000)$ [00 80] to
(0000 0000)(1001 1111)[00 9F].

7.2.3.2 UTF-8

When transmitting data by UTF-8, byte order mark shall not be used. When transmitting a control code by UTF-8, C 0 control code value of the code from 0×00 to $0 \times 1 F$ is transmitted using from (0000 $0000)$ [00] to $(00011111)[1 \mathrm{~F}] . \mathrm{C} 1$ control code value of the code from 0 x 80 to 0 x 9 F is transmitted using from $(11000010)(10000000)[C 280]$ to $(11000010)(10011111)[\mathrm{C} 29 \mathrm{~F}]$.
Parameters that following the C 0 and/or C 1 control code, and parameters following the CSI are transmitted in the same value of 1 byte.

7.3 Shift-JIS Character Codes

Any character coding using Shift-JIS shall be in compliance with Appendix 1 of JIS X0208:1997. Note that the characters in the range from Row 90 to Row 94 of the Kanji Character Set (2-byte code) specified in ARIB STD-B5 "Data Multiplex Broadcasting System for the Conventional Television using the Vertical Blanking Interval" (Ver. 1.0, '96 Aug. 6) are added to Kanji Character Set. The character set of Shift JIS are shown in Table 7-22.

Table 7-22 Shift-JIS Code Set

Code Set	Character Set	Remarks
Single-byte (Halfwidth) Characters Byte range: 21~7F, A1~DF	JIS X 0201-1997 (JIS Roman Characters and Halfwidth Katakana)	
Double-byte Characters First byte range: 81~9F,E0~EF Second byte range: $40 \sim 7 E, 80 \sim$ FC	JIS X 0208-1997 (Those of ARIB-STD-B5 Kanji character set is allocated to Rows 90 to 94 [Free Area].)	
Control Codes		
		Space character (20)

Chapter 8 Coding of graphics display command

8.1 Geometric

Coding of graphics display command by geometric should be the extended format based on that of ARIB STD-B5 "DATA MULTIPLEX BROADCASTING SYSTEM FOR THE CONVENTIONAL TELEVISION USING THE VERTICAL BLANKING INTERVAL "(Ver. 1.0, '96 Aug. 6).

8.1.1 Code set of graphics by geometric graphics display

Code set of graphics by geometric display should be graphics command code set, geometric macrocode set, C0 control code, and C1 control code. Each of them should be called into GL code area of 8 bit code table, GR code area, C 0 control code area and C 1 control code area, respectively.

8.1.2 Coding of graphics display command code set

Structure of graphics display command code set should be as shown in figure 8-3.
Graphics display command executes using opcode and zero, one or more operand which is transmitted successively to the opcode.
Opcode specifies type of command and operand specifies content of the command.

8.1.2.1 Structure of operand

8.1.2.1.1 Operand structure of each command

Operand structure of each command is shown in Table 8-1.

8.1.2.1.2 Operand structure of each operand type

Fixed operand length is one byte or more and specified by opcode. The Single-value operands consist of one to four bytes as determined by the domain command. The multi-value operands consist of one to eight bytes as determined by the domain command. As for the operand structure, when it is used to specify coordinate value ,the operand structure should be as shown in Figure 8-4 and when it is used to specify colour (SET COLOR), the operand structure should be as shown in figure 8-5. Coordinates should be within the unit screen and positive value is specified by binary decimal, and negative value is specified by two's complement notation.

8.1.2.2 Control commands

8.1.2.2.1 DOMAIN

A) Operand structure of DOMAIN

Operand of DOMAIN is composed of a 1 byte fixed format operand followed by a multi value operand.
B) Function and indicating method of fixed format operand

As for fixed format operand, one value operand length of each command is specified by b2 and b 1 , as for multi value operand the length is specified by b 5 to b 3 , and dimensionality is specified by b6. Each indicating method is as shown in Tables 8-2 to 8-4.
C) Function of multi value operand and indication method

Multi value operand specifies logical picture element size.

The logical picture element size is specified in case of drawing POINT, LINE, RC, RECT and POLY.

Default logical picture element size should be " 0 " for both dx and dy .
In this case, drawing point should be upper left corner and minimum picture element size specified by the receiver display mode is drawn as the logical picture element size. Therefore in case of 1920×1080 and 1280×720, the logical picture element size is $1 / 2048$ and in case of 960×540 and 720×480, it is $1 / 1024$.
D) Relation between drawing point and drawing position

Relation between drawing point and drawing position should be as shown in Figure 8-6.
E) Effective period of indication by DOMAIN

Indication by DOMAIN is effective until RESET or new indication is made.
F) Process when specified operand length and actual data length differs

When operand length of each command is shorter than the length specified by DOMAIN, b6 to b1 in lacked byte is considered as " 0 ". When operand length of each command is longer than the length specified by DOMAIN, additional operand in Table $8-1$ should be applied. Multi value operand length of the DOMAIN itself is specified by fixed format operand of DOMAIN.

8.1.2.2.2 TEXTURE

Operand should be 1 byte fixed format operand and the structure is as shown in Figure 8-1.

B8	B7	B6	B5	B4	B3	B2	B1
0	1	Texture pattern				Highlight	Line texture

Figure 8-1 Operand structure of TEXTURE
A) Function of line texture

Line texture specifies the type of drawing line (hereafter referred to as "line type") and the structure is shown in Table 8-5.

Specified line type is used when drawing LINE, ARC and RECT of the outline drawing and POLY.

It is not used for highlight.
Relation between line type and logical picture element size is shown in Figure 8-7.
Start point and end point of line and arc, and each vertex point of polygon should necessarily be drawn and never kept blank. When dx of logic picture element size is " 0 ", all lines except vertical line should be solid line and when dy is " 0 ", all lines except horizontal line should be solid line.

In colour mode 1 specified by SELECT COLOR, only the drawing area by line texture should be drawn in forward colour and in colour mode 2, drawing area is drawn in forward colour and lines between drawing areas are drawn in background colour.
B) Function of highlight

Highlight specifies whether the outline exist or not when ARC, RECT, and POLY are drawn in filled mode. In case of " 1 ", outline is applied and in case of " 0 ", outline is not applied. However, for chord of the ARC, outline is not applied.
Line type should be solid line of logical picture element width, regardless of line texture indication.

As for colour, the colour is black when the colour mode is 1 , and background colour when the colour mode is 2 .
C) Function of texture pattern

Structure of texture pattern is shown in figure 8-8.
Texture pattern is used for fill out pattern of ARC, RECT and POLY.
In case of fill out, specified pattern by the texture pattern is filled in all inside area including outline area, without drawing outline.

In case of colour mode 1 , only drawn part is drawn in forward colour and in case of colour mode 2 , drawn part is drawn in forward colour and the other part is drawn in background colour.

8.1.2.2.3 SET COLOR

SET COLOR specifies colour map data and the structure of operand is shown in figure 8-5.
Colour map address should be the value specified by SELECT COLOR and in case of colour mode 2, it should be the value specifies as forward colour.

When there are plural multi value operands, the colour map address is regarded as incremented respectively.

When operand is omitted, it should be transparent. (Allocate colour map address so that α value $=0 \%$)

8.1.2.2.4 SELECT COLOR

SELECT COLOR specifies colour mode and drawing colour by the single value operand (2 byte) of one or two and the structure is shown in figure 8-9.

When one value operand is single, colour mode is 1 and specifies forward colour.
One value operand specifies pallet number with $b 1$, $b 2$ (LSB) of the first byte and $b 1$ (MSB), b2 of the second byte by binary value and specifies colour map lower address with b3 (MSB) to b6 (LSB) of the first byte.

Pallet number should be 0 to 15 .
When there are two one-value operands colour mode is 2 . The first operand specifies forward colour and the second operand specifies background colour.

8.1.2.2.5 BLINK

BLINK specifies to change colour for the colour map.
Structure of operand consist of single one-value operand and three fixed-operands.
Single value operand specifies the colour specified by blink (hereafter referred as "blink-to") as colour map address. The first fixed operand specifies the period (hereafter referred to as "ON interval") during the colour of blink-to. The second fixed operand specifies the period (hereafter referred to as "OFF interval") during the colour of currently specified by the SELECT COLOR (hereafter referred as "blink-from"). The third fixed operand specifies the start delay time of blink which is specified previously, using multiple of the unit of 0.1 sec . (max. 63).
When ON interval or OFF interval is " 0 ", present drawing colour is set as the blink-from colour and finishes the blink process where the colour specified by the first operand of this command as the blinkto colour.

When all operands are omitted, all blinks where the current drawing colour is set as the blink-from colour terminate.

Blink process, which is simultaneously defined, should be 16 or less.

8.1.2.2.6 RESET

RESET initializes DOMAIN, BLINK, TEXURE and the macro statement of geometric macrocode set.

RESET has 2 byte of fixed operand and specifies initialization of DOMAIN by b1 of the first byte, BLINK by b2, TEXTURE by b4, and geometric macrocode set by b5 of the second byte. Other bits are undefined.

When each bit is " 1 ", it is in default condition and when " 0 ", initialization of respective item is not made.

8.1.2.2.7 SET PATTERN

SET PATTERN has function to specify line texture and pattern texture in picture element unit, in place of TEXTURE. Operand is composed of multi value operand. Basic structure of operand consist of 3 bytes and should be as shown in figure 8-2.

Picture element used in SET PATTERN should be the minimum picture element specified by the receiver display mode, which is not affected by DOMAIN.

First operand

B8	B7	B6	B5	B4	B3	B2	B1
0	1	Pattern type	Pattern data				

Second operand

B8	B7	B6	B5	B4	B3	B2	B1
0	1	Pattern data					

Third operand

B8	B7	B6	B5	B4	B3	B2	B1
0	1	Pattern data					

Figure 8-2 Structure of SET PATTERN operand
B 6 and b 5 of the first operand specifies the pattern type. When $\mathrm{b} 6, \mathrm{~b} 5=0,0$, it specifies line pattern (repetition of 16 picture elements) type. When $\mathrm{b} 6, \mathrm{~b} 5=0,1$, it specifies fill pattern (repetition of 8 picture elements). When $\mathrm{b} 6, \mathrm{~b} 5=1,0$, it specifies fill pattern (repetition of 16 picture element). B6, $\mathrm{b} 5=1,1$ is undefined.
In each pattern data bit, " 1 " specifies picture element to draw, and " 0 " specifies background colour.
In each fill pattern type, b 4 of the first operand is set as MSB and scanning is done in such way that MSB is pointed at the top left then it is scanned from the left to the right, from the top to the bottom.

Operand structure and function of each pattern type is as follows.
A) Line pattern

In the line pattern, line texture is specified by 16 bit data in 3-byte operand.
Specified line texture is used when drawing LINE, and ARC, RECT of outline form and POLY.
It is not used for highlight.

Line, or start point and end point of the arc and each vertex of polygon should be drawn and blank is not allowed.

In the colour mode 1 which is specified by SELECT COLOR, only drawing area with line texture is drawn with forward colour, and in the colour mode 2, drawing area is drawn with forward colour and line between drawing areas is drawn in background colour.
B) Fill pattern (repetition of 8 picture elements)

Fill pattern specifies pattern texture for fill out. Pattern texture in case of 8-picture element repetition is structured by repeating rectangle texture data of $d x=8$-picture element, $d y=2$ picture element for necessary times and by piling them up in y direction. For example, when defining pattern texture of $d x=8$-picture element, $d y=8$-picture element, it consists of 12 byte in total, that is , 4 sets of 3 byte-operand.

In colour mode 1 specified by SELECT COLOR, drawing area by pattern texture is drawn with forward colour and in colour mode 2, drawing area is drawn with forward colour and line between drawing areas is drawn in background colour.
C) Fill pattern (16 picture elements repetition)

Fill pattern specifies pattern texture for fill out. Pattern texture in case of 16-picture element repetition is structured by repeating data of $\mathrm{dx}=16$-picture element, $\mathrm{dy}=1$-picture element for necessary times. For example, when defining pattern texture of dx $=16$-picture element, $\mathrm{dy}=$ 16-picture element, it consists of 48 byte operand in total, that is 16 sets of 3 byte-operand.

In colour mode 1 specified by SELECT COLOR, drawing area by pattern texture is drawn in forward colour and in colour mode 2, drawing area is drawn with forward colour and line between drawing areas is drawn in background colour.

8.1.2.3 Drawing command

8.1.2.3.1 POINT

POINT establishes the coordinate of drawing and draws a point.
Specifying the coordinate is made using absolute coordinates value (X, Y) on the unit screen or relative coordinate value (dx, dy) from the point drawn immediately before by one multi-value operand.
After POINT is executed, the drawing point moves to the last specified point.
Coordinate of drawing point specifies inside of the square area which is composed of the points $(-1,-$ $1),(-1,2),(2,2),(2,-1)$. When drawing is specified to draw exceeding the main text display area, geometric graphics drawn out of text display area, is not displayed. (This should be applied to the following drawing commands.)

Type and operation of POINT is as shown in Table 8-6.

8.1.2.3.2 LINE

Line is drawn using current colour and line texture specified by the size of logic picture element from the start point to the end point.

Start point is the point specified by absolute coordinates value (X, Y) or current drawing point and end point is the point specified by absolute coordinates value (X, Y) or relative coordinates value (dx, dy).
After line is executed, end point will be the new current drawing point.
Type and operation of LINE is as shown in Table 8-7.

8.1.2.3.3 ARC

ARC draws circle or segment of circle.
Start point of arc is the point specified by the absolute coordinates value (X,Y) or current drawing point. Intermediate point and end point are specified by the relative coordinates value (dx, dy) from the start point and the intermediate point, respectively.
After ARC is executed, end point will be the new current drawing point.
When start point, intermediate point and end point is aligned, draw a straight line between the start point and end point.

When start point and intermediate point coincides or when intermediate point and end point coincides, draw a straight line.

When start point and end point coincides, draw a circle whose diameter is from the start point to the intermediate point.
When end point is omitted, draw a circle regarding the start point as end point.
Even if highlight is specified, the chord is not highlighted.
Type and operation of ARC is as shown in Table 8-8.

8.1.2.3.4 RECT

RECT draws a rectangular area with width (dx) and height (dy) from the start point.
Start point is the point specified by the absolute coordinate value (X, Y) or current drawing point and the width and the height are specified by the relative coordinate value (dx , dy) from the start point.

After RECT is executed drawing point moves from the start point to dx toward X direction and Y direction does not change.

Type and operation of RECT is as shown in Table 8-9.

8.1.2.3.5 POLY

POLY draws polygon by specifying coordinates of three or more vertices.
Start point is the point specified by the absolute coordinate value (X, Y) or current drawing point.
Polygon should be a single closed area and its vertex should be specified by the relative coordinate value (dx , dy) from the previous vertex and next vertex is specified as such.

Numbers of vertices should be 256 maximum.
End point and start point should coincide and coordinate value of the end point is not specified.
Type and operation of POLY is as shown in Table 8-10.

8.1.3 Geometric macrocode set

Geometric macrocode set should be from 10/0 to 15/15.
All default macro statement should be NUL.

8.1.4 Coding of control function

8.1.4.1 C0 control code

C0 control code should be only NUL and CS shown in Table 7-11.
However, CS should be used only within sentence indication area.

8.1.4.2 C1 control code

C1 control code should be only MACRO and TIME shown in Table 7-11.
However, parameters of macro definition start, macro definition start and execution and macro definition end in this case should be $05 / 0,05 / 1$ and $05 / 15$ respectively and macro number should be from $02 / 0$ to $07 / 15$.

				B7	0	0	1	1	1	1
				B6	1	1	0	0	1	1
				B5	0	1	0	1	0	1
B4	B3	B2	B1		2	3	4	5	6	7
0	0	0	0	0	RESET	$\begin{aligned} & \hline \text { RECT } \\ & \text { OUTLINED } \\ & \hline \end{aligned}$		Value data		
0	0	0	1	1	DOMAIN	$\begin{aligned} & \text { RECT } \\ & \text { FILLED } \end{aligned}$				
0	0	1	0	2		SET \& RECT OUTLINED				
0	0	1	1	3	TEXTURE	SET \& RECT FILLED				
0	1	0	0	4	$\begin{aligned} & \hline \text { POINT SET } \\ & \text { ABS } \\ & \hline \end{aligned}$	POLY OUTLINED				
0	1	0	1	5	$\begin{aligned} & \hline \text { POINT SET } \\ & \text { REL } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { POLY } \\ & \text { FILLED } \end{aligned}$				
0	1	1	0	6	$\begin{array}{\|l} \hline \text { POINT } \\ \text { ABS } \\ \hline \end{array}$	SET \& POLY OUTLINED				
0	1	1	1	7	POINT REL	$\begin{aligned} & \text { SET \& POLY } \\ & \text { FILLED } \\ & \hline \end{aligned}$				
1	0	0	0	8	$\begin{aligned} & \text { LINE } \\ & \text { ABS } \end{aligned}$					
1	0	0	1	9	$\begin{aligned} & \hline \text { LINE } \\ & \text { REL } \\ & \hline \end{aligned}$					
1	0	1	0	10	SET \& LINE ABS					
1	0	1	1	11	$\begin{aligned} & \text { SET \& LINE } \\ & \text { REL } \end{aligned}$					
1	1	0	0	12	ARC OUTLINED	SET COLOR				
1	1	0	1	13	ARC FILLED	SET PATTERN				
1	1	1	0	14	SET \& ARC OUTLINED	SELECT COLOR				
1	1	1	1	15	SET \& ARC FILLED	BLINK				

Figure 8-3 Graphics display command code

Table 8-1 Structure of operand and additional operand for each command

Command	structure of operand	Additional operand
RESET	Fixed (2 byte)	Invalid
DOMAIN	Fixed (1 byte) and multi-value	Invalid
TEXTURE	Fixed (1 byte)	Invalid
POINT	Multi-value	Understood as operand with the same opcode
LINE	Multi-value	Understood as operand with the same opcode
ARC	Multi-value	Understood as operand with the same opcode
RECT	Multi-value	Understood as operand with the same opcode
POLY	Multi-value	Understood as operand with the same opcode
SET COLOR	Multi-value	Understood as operand with the same opcode
SET PATTERN	Multi-value	Understood as operand with the same opcode
SELECT COLOR	Single value	Invalid
BLINK	Single value and fixed (3-bite)	Invalid

Note 1: \pm specifies code bit length and in case of positive, specifies " 0 " and negative, " 1 ".
Note 2: In the following table including appendix, MSB is the most significant bit and LSB is the least significant bit.

Figure 8-4 Structure of operand when coordinates value is designated

Figure 8-5 Structure of operand when colour indication is used

Table 8-2 Single value operand length

B2	B1	Single value operand length
0	0	1
0	1	2 (default)
1	0	3
1	1	4

Note: On and after this table, default means the condition after initialize.
Table 8-3 Multi-value operand length

B5	B4	B3	Multi-valued operand length
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4 (default)
1	0	0	5
1	0	1	6
1	1	0	7
1	1	1	8

Table 8-4 Dimension

B6	Dimension
0	2 dimensional (default)
1	Undefined

Drawing point

Figure 8-6 Drawing point and drawing position

Table 8-5 Structure of line texture

B2	B1	Line type
0	0	Solid line (default)
0	1	Dotted line
1	0	Broken line
1	1	Dotted and broken line

Solid line

Dotted line

Broken line

Figure 8-7 Relation between line type and size of logical picture element

B6	B5	B4	Texture pattern
0	0	0	Complete fill out (default)
0	0	1	Vertical hatching
0	1	0	Horizontal hatching
0	1	1	Cross hatching

Note: Fill out pattern of texture pattern should be as follows. When both dx and dy are 0 , it is completely filled out.

Vertical hatching

Completely filled out

Horizontal hatching

Figure 8-8 Structure of texture pattern

B8	B7	B6	B5	B4	B3	B2	B1
----	1						
---	1	0	0	0	0		

----	1						
---	1	0	0	0	0		

Note: Background colour is used only when there are two one-value operands.
Figure 8-9 Structure of SELECT COLOR

Table 8-6 Type and operation of POINT

Type of point	Operation
POINT SET ABS (One multi-value operand)	Drawing point is set to the absolute coordinate-value specified by the operand but drawing is not executed.
POINT SET REL (One multi-value operand)	New drawing point of the relative coordinates value specified by the operand is set in addition to the coordinates value of the current drawing point but drawing is not executed.
POINT ABS (One multi-value operand)	Drawing point is set to the absolute coordinate-value specified by the operand and drawing is executed by the forward colour with logical picture element size.
POINT REL (One multi-value operand)	Drawing point is set to the relative coordinate-value from the current drawing point specified by the operand and drawing is executed by the forward colour with logical picture element size.

Note: Comments in the parentheses indicate type and number of operand.
Same as in Tables 8-7 to 8-9.

Table 8-7 Type and operation of LINE

Type of LINE	Operation
LINE ABS (One multi-value operand)	Setting current drawing point as the start point, set the end point at the absolute coordinate-value specified by multi-value operand.
LINE REL (One multi-value operand)	Setting current drawing point as the start point, set the end point at the relative coordinate-value from the start point specified by multi-value operand.
SET \& LINE ABS (Two multi-value operand)	Start point and end point are specified by the absolute coordinate-value with the first and second multi-value operand.
SET \& LINE REL (Two multi-value operand)	Start point is specified by the absolute coordinate-value with the first operand. End point is specified by the relative coordinate-value from the start point with the second multi-value operand.

Table 8-8 Type and operation of ARC

Type of ARC	Operation
ARC OUTLINED (Two multi-value operand)	Start point is the current drawing point and intermediate point is specified by the first operand and end point is specified by the second operand. Arc or circle is drawn with the colour and line texture which is currently specified.
ARC FILLED (Note) (Two multi-value operand)	Fill out the inside area of arc, chord which is determined by ARC OUTLINED with the specified colour and texture pattern.
SET \& ARC OUTLINED (Three multi-value operand)	Start point is specified by the first operand, intermediate point by the second operand and end point by the third operand. And draw arc or circle by the colour and line texture which is currently specified.
SET \& ARC FILLED Note) (Three multi-value operand)	Fill out the inside area of arc, chord which is determined by SET \& ARC OUTLINED with the specified colour and texture pattern.

Note: Outline width of arc and chord is the current logical picture element size.

Table 8-9 Type and operation of RECT

Type of RECT	Operation
RECT OUTLINED (One multi-value operand)	Start point is the current drawing point and width and height is specified by the operand. And four sides of the rectangle are drawn by the specified colour and line texture.
RECT FILLED (Note) (One multi-value operand)	Fill out the inside area of rectangle which is determined by RECT OUTLINED with the specified colour and texture pattern.
SET \& RECT OUTLINED (Two multi-value operand)	Start point is specified by the first operand. Width and height of the rectangle is specified by the second operand. Four sides of the rectangle are drawn by the specified colour and line texture.
SET \& RECT FILLED Note) (Two multi-value operand)	Fill out the inside area of rectangle which is determined by SET \& RECT OUTLINED with the specified colour and texture pattern n.

Note: Width of the side line is the current logical picture element size.

Table 8-10 Type and operation of POLY

Type of POLY	Operation
POLY OUTLINED	Start point is the current drawing point and coordinate of each vertex is specified by the multi-value operand. And each side of polygon is drawn using the specified colour and line texture.
POLY FILLED \quad (Note)	Polygon and inside area determined by POLY OUTLINED are filled out using the specified colour and texture pattern.
SET\&POLY OUTLINED	Start point is specified by the first multi-value operand and coordinates of each vertex are specified by succeeding multi-value operand. And each side of polygon is drawn using the specified colour and line texture.
SET\&POLY FILLED (Note)	Polygon and inside area determined by SET \& POLY OUTLINED are filled out using the specified colour and texture pattern.

Note: Side line width is the actual logical picture element size.

Annex A Operation of video scaling

The receiver unit shall handle the presentation position and scaling of video in accordance with instruction of multimedia coding or video syntax.

A. 1 When multimedia coding is not used together with video

When multimedia coding is not used together with video, horizontal and vertical scaling is designated by using display_horizontal_size and display_vertical_size of sequence_display_extension, respectively.

Position of decoded picture and decoder output picture is designated using
frame_centre_horizontal_offset and frame_centre_vertical_offset of picture_display_extension. frame_centre_vertical_offset having value of 0 is recommended for actual operation.

A. 2 When multimedia coding is used together with video

When multimedia coding is used together with video, both frame_centre_horizontal_offset and frame_centre_vertical_offset should be zero. Designations of position and scaling are specified by multimedia coding.

Annex B PNG coding

B. 1 File format of PNG

File format of PNG is constructed as shown in Figure B-1, which chunk of blocked information is aligned after PNG file signature.

PNG file signature	Chunk 1	Chunk 2	---	Chunk n
8 byte	N1 byte	N2 byte		Nn byte
Byte length of chunk data	Chunk type	Chunk data		CRC
4 byte	4 byte	N byte		4 byte

Figure B-1 File format of PNG

PNG file signature is in 8 byte and has following value (decimal).
13780787113102610 (In hexadecimal 8950 4E 47 0D 0A 1A 0A)

B. 2 Structure of chunk

Structure of chunk is as shown in the figure below of Figure B-1. Chunk type is defined in four alphabetic letters and has each attribute shown of Table B-1 according to whether the four letters are in capital letter of small letter (whether the fifth bit of the character code is 0 or 1).

Table B-1 Meaning of four letters of chunk type

	Capital letter	Small letter
FIRST LETTER	Chunk necessary for display	Chunk for supplemental information
Second letter	Chunk for public information	Chunk for private information
Third letter	Should be always capital in the actual PNG specification	(Reserved for the future)
Fourth letter	Chunk which depends on picture. Cannot be copied.	Chunk which can be copied

Standard chunk types are shown in Table B-2. Name of the chunk type in Table B-2 is in accordance with the rule in Table B-1. For example, 1HDR-1END is the necessary chunk and followings are supplemental chunk.

Table B-2 Standard chunk type table

Chunk type	Meaning	Description	Arrangement in plural	Constraint of chunk order
IHDR	Image header	Designation of vertical and horizontal pixel number, bit depth, colour type (*1), image compression method (*2), filter type, and with or without interlace.	-	Always placed at the beginning.
PLTE	Palette	Have 1 to 256 palette entries. In some cases, this chunk is unnecessary according to colour type.	-	Before IDAT.
IDAT	Image data	Image data itself.	O	Plural IDAT should be always put successively.
IEND	Image trailer	Indicates the end of PNG data stream and chunk data is empty.	-	Always placed at the end.
bKGD	Background colour	Background colour data	-	After PLTE. Before IDAT.
cHRM	Chromaticity and white point	Data of chromaticity and white reference point	-	Before PLTE and IDAT.
gAMA	Image gamma	Gamma value when image is generated.	-	Before PLTE and IDAT.
hIST	Image histogram	Frequency data of each colour of colour palette. Exists only when there is palette chunk.	-	After PLTE. Before IDAT.
pHYs	Physical pixel dimension	Designates pixel number per each unit length in vertical and horizontal, or aspect ratio.	-	Before IDAT.
sBIT	Significant bit	Bit depth of original image.	-	Before PLTE and IDAT.
tEXt	Text data	Have 79 byte key word data with information of title and writer and optional length text data.	Ofter PLTE. Before IDAT.	
tIME	Image final revision date	Date and time of the latest revision is indicated in 7 byte.	None	
tRNS	Transparent colour	Setting transparent colour	None	
zTXt	Compressed text data	Having keyword data same format as tEXt (not compressed), text compression method (*2), compressed text data (optional length).	O	-

(*1) Colour type
There are five designated colour types. Permitted combination of those and bit depth are shown in Table B-3.

Table B-3 The combination of colour type and bit depth

Colour type	Permitted bit depth	Explanation
0	$1,2,4,8,16$	Grey scale
2	8,16	R, G, B colour
3	$1,2,4,8$	Palette index (PLTE chunk is necessary)
4	8,16	Alpha is supported with grey scale
6	8,16	Alpha is supported with R, G, B colour.

(*2) Designation of compression method
Only " 0 " (Deflate/Inflate compression) is specified for compression method designated in 1 byte using 1HDR and zTXt. Deflate/Inflate compression file is based on zlib format and in accordance with RFC-195 specification. Compression algorithm and coding of zlib is in accordance with RFC-1951. Compression method other than " 0 " should be extended in the future.

Annex C Operation guideline related to audio coding

C. 1 Reference audio level

Reference audio level of each audio coding shall be FS-18dB.

C. 2 Mix process at receiver unit

In data broadcasting operation, mixed signal coded by two or more audio coding may be output to receiver unit speaker. Guideline for this mixing process is specified in this clause.

C.2.1 Recommended operation in the receiver unit

As it is hard to transmit the same sound in different coding, in data broadcasting receiver unit, it is recommended to output the signal with the same reference audio level.

In product planning of the receiver unit, volume setting may be made for the audio uniquely for special usage coded in a certain method. Audio output is not always made according to the above setting. However, in order to avoid listener's confusion, original mix down specification, which can be played back with the volume balance that the broadcast station intended is recommended to be the basic condition.

C.2.2 Operation in broadcasting station side

In broadcasting station, audio signal with volume management shall be transmitted, presupposing that output is made in the above audio balance in receiver unit side.

Annex D Coding of DRCS pattern data

DRCS coding in this standard is the enhancement of the method specified on ARIB STD-B5 p. 151 to p.155. Syntax of DRCS structure description is shown in Table D-1.

Table D-1 DRCS structure syntax

Syntax	No. of bits	Mnemonic
```Drcs_data_structure() { NumberOfCode For (i=0;I<numberOfCode;I++){ CharacterCode NumberOfFont for (j=0;j<numberOfFont;j++){ fontId mode if (mode == '0000'\| mode=='0001'){ depth width height for (k=0;k<N;k++) { patternData } else{ regionX regionY geometricData_length for (k=0;k<N;k++) { geometricData } } } }```	$\begin{aligned} & 8 \\ & 16 \\ & 8 \\ & 4 \\ & 4 \\ & 4 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 16 \\ & 8 \end{aligned}$	uimsbf uimsbf uimsbf uimsbf bslbf uimsbf uimsbf uimsbf uimsbf uimsbf uimsbf uimsbf uimsbf

numberOfCode (Number of code): Indicates number of sent out supplemental character (Gaiji) code.

CharacteCode (Assigned code value of supplemental character): Indicates code value of supplemental character (Gaiji) code. The value is assigned as follows; In case of 1 byte DRCS, the first byte shall designate the DRCS set used.04/1 is for DRCS-1, 04/2 is for DRCS-2, ..... and 04/15 is for DRCS-15. The second byte shall designate assigned code value of the character within the DRCS set specified by the first byte. The second byte shall have the value in the range of $2 / 1$ to $7 / 14$.In case of 2 byte DRCS, the first byte and the second byte shall designate the code value of the supplemental character (Gaiji).

NumberOfFont (Number of font): Indicates number of font to be defined at the same time.
Font Id (Font identification): Indicates font number. Definition of font number is as follows; Font number identifies typeface of DRCS font sent out and the values are 0 to 15 . Font number of 0 indicates that DRCS does not care for typeface.

* Correspondence of other font number and actual typeface will be specified otherwise.
mode (transmission mode): Indicates whether to use compression or not. Semantics of this field is defined in Table D-2.

Table D-2 Transmission mode

b4 b3 b2 b1	Compression			
0	0	0	0	2 gradation, without compression
0	0	0	1	Multi-graduation, without compression
0	0	1	0	2 colour, with compression
0	0	1	1	Multi-colour, with compression

depth (Depth of gradation): Indicates value of font gradation number with subtraction of 2. (0:2 gradations, 1:3 gradations ..... )
width (Horizontal size): Indicates horizontal size of DRCS pattern in pixel.
height (Vertical size): Indicates vertical size of DRCS pattern in pixel.
patternData (Pattern data): In case of non-compression, pattern data is organized by the scanned pixel data from left to right and top to bottom in the area specified by the value of the width and height fields. Each pixel data is indicated by bits of which number is decided by the gradation number. The data value corresponding to each gradation color is ' 0 ' for background and the maximum value for foreground. Such pixel data are arranged from the first byte in the order of b8 ... b1.
region $X$,region $Y$ (Logical pixel area): Indicates area used when pattern data is described in geometric. Logical area is represented as $(1.0 \times 1.0)$ and the area of rectangle of $(0,0),($ regionX, 0$)$, (regionY,0), (regionX, regionY) represents the area used for the DRCS character by $1 / 256$ unit. In the receiver, this area is converted to actual character size area to display. Reference position of conversion should be left bottom when written horizontally and middle of the top when written vertically.
geometricData_length (Geometric data length): Indicates number of bytes of following geometric data.
geometricData (Geometric data): Geometric data is a geometric code sequence composing DRCS pattern. Character attribute when designating color, flashing, polarity, writing mode, enclosure, and underline, excluding designation of size is not applied to multi-color geometric data [mode $=11$ ]. These character attributes are stored and used for the following characters.

## Annex E Conversion from 8bit-Code, EUC-JP, and Shift JIS to UCS and Handling of Additional Characters and DRCS in UCS

## E.1. General Rules for Coding Conversion

Mapping a character code in the tables defined in JIS X0201, JIS X0208, JIS X0212, and JIS X0213:2004 onto a corresponding character code in UCS complies with Appendix 2, JIS X02211:2001. When a difference is found between Appendix 2, JIS X0221-1:2001 and JIS X0213:2004, JIS X0213:2004 should be used.

## E.2. Conversion from Shift JIS to UCS

To convert Shift JIS to UCS, OVER LINE (0x7E) defined in JIS X 0201 is converted to TILDE ( $0 x 007 \mathrm{E}$ ). Any conversion of a 2-byte character in the range from Rows 90 to 94 complies with Table 7-19 in Chapter 7.

## E.3. Conversion from EUC-JP to UCS

To convert EUC-JP to UCS, OVER LINE (0x7E) defined in JIS X 0201 is converted to TILDE ( $0 x 007 \mathrm{E}$ ). Any conversion of a 2-byte character in the range from Rows 90 to 94 complies with Table 7-19 in Chapter 7.

## E.4. Conversion from 8bit-Code to UCS

To convert 8bit-code to UCS, OVER LINE (0x7E) defined in JIS X 0201 is converted to TILDE (0x007E).

Any conversion of a non-spacing character in the range of Row 1, Cells 13 to 18 and Row 2, Cell 94 in the Kanji set to a UCS code complies with Table E-1. Any resulting UCS code should be handled as specified in " ISO/IEC 10646:2014 Annex B(normative) List of combining characters ."

Any character in the proportional character sets is mapped onto a corresponding monospaced character before the proportional character is converted to a UCS code. Any character in the mosaic set is ignored. When using a UTF-8, C1 control codes is converted according to the provision of clause 7.2.3.2.

Table E-1 Conversion of Non-spacing Character

Row/Cell	Character Description	UCS Code Value	UCS Character Name
$1-13$	ACUTE ACCENT	$0 \times 0301$	COMBINING ACCUTE ACCENT (Oxia)
$1-14$	GRAVE ACCENT	$0 \times 0300$	COMBINING GRAVE ACCENT (Varia)
$1-15$	DIAERESIS	$0 \times 0308$	COMBINING DIAERESIS(Dialytika)
$1-16$	CIRCUMFLEX ACCENT	$0 \times 0302$	COMBINING CIRCUMFLEX ACCENT
$1-17$	OVERLINE	$0 \times 0305$	COMBINING OVERLINE
$1-18$	LOW LINE	$0 \times 0332$	COMBINING LOW LINE
$2-94$	LARGE CIRCLE	$0 \times 20 \mathrm{DD}$	COMBINING ENCLOSING CIRCLE

## E.5. DRCS

Any character in DRCS is mapped into the Private Use Area in the Basic Multilingual Plane. The area available to DRCS starts with Row EC, Cell 00.

## Annex F Operation guideline related for MPEG-4 video coding

## F. 1 Video coding

The maximum number of macro blocks per unit time is specified in ISO/IEC 14496-2, so that picture size and frame rate should be decided under consideration of receiver function and resource format. Recommended operation guidelines are as follows:
(1) The first VOP(Video Object Plane) in VOL(Video Object Layer) should be I-VOP.
(2) The vop_coded of first VOP in VOL should be "1".
(3) Configuration information (Visual Object Sequence Header, Visual Object Header, Video Object Header, Video Object Layer Header) should be inserted within 5 seconds interval.
(4) The interval of VOP must be integral multiple of 1001/vop_time_increment_ resolution seconds.
(5) Synthesis and display of VOP must be done at maximum frame rate $(30000 / 1001 \mathrm{~Hz})$.
(6) Aspect ratio of pixel must be same as that on the same screen and of the display screen size in table F-2.
(7) VOP of video_object_layer_shape="10" (binary only) should not be displayed.

Examples of constraints of coding parameters in operation guideline are shown in table F-1.
Table F-1 Constraints of coding parameter

Constraints of VOL						Constraints of video_signal_type (Note 3)			Other parameter in Profile @Level	Typical VOP size
video object layer width (Notel)	$\begin{aligned} & \text { video } \\ & \text { object } \\ & \text { layer } \\ & \text { height } \\ & \text { (Notel) } \end{aligned}$	$\begin{aligned} & \text { aspect_ } \\ & \text { ratio_ } \\ & \text { info } \end{aligned}$	$\begin{aligned} & \text { Vop_time- } \\ & \text { increment } \\ & \text { resolution } \\ & \text { (Note2) } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { fixed_ } \\ & \text { vop_- } \\ & \text { rate } \\ & \text { (Note2) } \end{aligned}\right.$	fixed   vop   time   increment (Note2)	colour primaries	transfer characteris tics	matrix coefficients		
352>=	$288>=$	2	30000, 24000	1, 0	Integral multiple of 1001	1	1	1	Simple $@$ L3 or Core $@ 2$	
			$\begin{aligned} & 15000, \\ & 12000, \\ & 10000 \\ & \hline \end{aligned}$						Simple $@ L 2$ or Core $@ L 2$	CIF
$352>=$	$240>=$	3, 5	$\begin{aligned} & 30000, \\ & 24000 \end{aligned}$						Simple@L3   or   Core $@$ L2	SIF
			$\begin{aligned} & \hline 15000, \\ & 12000, \\ & 10000 \end{aligned}$						Simple@L2 or Core@L2	
$320>=$	$240>=$	1	$\begin{aligned} & 30000, \\ & 24000, \end{aligned}$						$\begin{gathered} \hline \text { Simple@L3 } \\ \text { or } @ L 2 \\ \text { Core } \\ \hline \end{gathered}$	
			$\begin{aligned} & 15000, \\ & 12000, \\ & 10000 \end{aligned}$						Simple@L2 or Core@L2	QVGA
$176>=$	$144>=$	2	$\begin{aligned} & 30000, \\ & 24000 \end{aligned}$						$\begin{gathered} \hline \text { Simple } @ \text { L2 } \\ \text { or } \\ \text { Core } @ \text { L1 } \\ \hline \end{gathered}$	
			$\begin{aligned} & 15000, \\ & 12000, \\ & 10000 \end{aligned}$						Simple@L1 or Core@L1	QCIF
$176>=$	$120>=$	3, 5	$\begin{aligned} & 30000, \\ & 24000 \end{aligned}$						Simple@L2   or   Core $@$ L1	
			$\begin{aligned} & 15000, \\ & 12000, \\ & 10000 \end{aligned}$						Simple@L1 or Core@L1	QSIF



Meaning of each code number of MPEG-4 coding parameter in Table F-1.	
colour_primaries	$1=$ Rec. ITU-R BT.709 (BT.1361)
transfer_characteristics	$1=$ Rec. ITU-R BT.709 (BT.1361)
matrix_coefficients	$1=$ Rec. ITU-R BT.709 (BT.1361)
aspect_ratio_info	$1=$ square pixel
	$2=12: 11$ (625 lines 4:3 display)
	$3=10: 11$ (525lines 4:3display)
	$5=40: 33$ (525lines 16:9 display)
fixed_vop_rate	$1=$ fixed VOP rate, 0 $=$ variable VOP rate

Note 1: In a case of using arbitrary shaped object (video_object_layer_shape!="rectangular"), width and height of VOP are specified by vop width and vop height respectively. When video_object_layer_width and video_object_layer_height ( or vop_width and vop_height )are not integral multiple of the number sixteen, dummy data are added to make them integral multiple of 16 . The dummy data are added at right of active samples or below of active lines. In practice encoding process is conducted in these samples and lines. By removing dummy data, output video data are made from effective samples or lines in decoder.
Note 2: Frame rate calculation method for fixed_vop_rate=1(fixed VOP rate) is as follows:
Fixed VOP rate = vop_time_increment_resolution/fixed_vop_time_increment
Example: $\quad 29.97 \ldots . \mathrm{Hz}=30000 / 1001$
$23.97 \ldots . \mathrm{Hz}=24000 / 1001$
$14.98 . . . . \mathrm{Hz}=15000 / 1001$
$11.98 \ldots . \mathrm{Hz}=12000 / 1001$
$9.99 \ldots . \mathrm{Hz}=10000 / 1001$
Note 3: In the case of video_signal_type $=" 0$ ", or video_signal_type $=" 1 "$ and colour_description $=$ " 0 ", each value of colour_primaries, transfer_characteristics and matrix_coefficients is processed as " 1 " in the receiver side.

Screen size of one VOP or synthesized some VOPs are shown in table F-2.
When screen size is 16:9 in QVGA or SQVGA format, the number of vertical pixels are reduced, but aspect of pixel is not changed on display.

Table F-2 Display screen size

Format	video_object_layer_width   or   vop_width	video_object_layer_height   or   vop_height
CIF(4:3)	352	288
SIF(4:3.16:9)	352	240
QVGA(4:3)	320	240
QVGA(16:9)	320	180
QCIF(4:3)	176	144
QSIF(4:3, 16:9)	176	120
SQVGA(4:3)	160	120
SQVGA(16:9)	160	90
SQCIF(4:3)	128	96

## Informative explanation

## 1 Coding of MPEG-4 and scope

The optimum coding according to coding type (music, audio) and bit rate should be selected for MPEG-4 audio. List and applied information quantity of MPEG-4 audio is shown in Table 1-1 and applied area is shown in Figure 1-1 for information.

Table 1-1 Structure of MPEG-4 audio coding scheme and applied information quantity

Coding Scheme	Bit rate (k bit/s)
T/F coder (time/frequency conversion coding)	
In accordance with AAC	24-64
TwinVQ	6-40
CELP coder (code excitation line estimation code)	
WB-CELP	14-24
NB-CELP	4-12
Parametric coder	
HILN	4-16
HVXC	2-4
SNHC(Synthetic Natural Hybrid Coding)	
SA coder (composition with music)	-
TTS coder (composition with audio)	-



Figure 1-1 Main application area of MPEG-4 codec

## 2 Extension part in 8bit-character code

Character coding of 8bit-code is based on ARIB STD-B5 "Standard television data multiplex broadcasting by transmission method using vertical blanking interval"(Ver. 1.0, '96 Aug. 6). with partly extensions. Extended parts are as described below.

### 2.1 Extension in C1 control set

COL: color designation
To correspond to 256 color palette, palette designation is extended to palette number 15 .

### 2.2 Extension for CSI (newly definition)

RCS: Raster color designation
SDF: Display composition, dot designation
SDP: Display position designation
SSM: Character composition, dot designation
PLD: Partially Line Down
PLU: Partially Line Up
SHS: Designation of character spacing
SVS: Designation of line spacing
GSM: Character deformation
GAA: Coloring block
SRC: Raster designation
TCC: Switching control
CFS: Character font set
ORN: Designation of character ornament
MDF: Designation of font
PRA: Playback of built-in sound
XCS: Character substitution code sequence definition
ACS: Alternative character set
SCS: Skip character set

## 3 Extension part of geometric

Description command coding of geometric is based on ARIB STD-B5 "Standard television data multiplex broadcasting by transmission method using vertical blanking interval"(Ver. 1.0, '96 Aug. 6) with extension. Extended parts are described below.

### 3.1 Additional definition of new command

SET PATTERN is defined as new extended command. By using this command, line texture or pattern texture is specified in pixel in place of TEXTURE.

### 3.2 Modification of relation between drawing point and drawing position

When drawing position is $\mathrm{dx}>0$ and $\mathrm{dy}>0$, relation of drawing point and drawing position is changed to be in the fourth quadrant.

## References

(1) ARIB STD-B5 Ver 1.0 "Standard television data multiplex broadcasting by transmission method using vertical blanking interval" (1996 Aug.)
(2) ARIB STD-B32 Ver. 2.2 "Video coding, audio coding and multiplexing specifications for digital broadcasting" (2009 Jul.)
(3) ISO/IEC 11172-2 (1993) Information Technology - Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to About 1,5 Mbit/s - Part 2: Video
(4) ISO/IEC 13818-3 (1998) Information Technology - Generic Coding of Moving Pictures and Associated Audio Information-Part3 Audio
(5) ISO/IEC 13818-7 (1997) Information Technology - Generic Coding of Moving Pictures and Associated Audio Information - Part 7:Advanced Audio Coding (AAC)
(6) ISO/IEC 10918-1 (1994)) Information Technology - Digital Compression and Coding of Continuous-Tone Still Images: Requirements and Guidelines
(7) ISO/IEC 10646 : 2003 (2003) Universal Multiple-Octet Coded Character Set (UCS)
(8) PNG Specification Ver1.0 W3C Rec.Oct. $1996^{1}$
(9) MNG Format Version 0.96-19990718 ${ }^{2}$
(10) DAVIC 1.4 Specification Part9 (1998)(AnnexB)
(11) RECOMMENDATION ITU-R BT. 709 (1990) Basic Parameter Values for the HDTV Standard for the Studio and for International Program Exchange
(12) RECOMMENDATION ITU-R BT. 1361 (1998) Worldwide Unified Colorimetery and Related Characteristics of Future Television and Imaging Systems
(13) JIS X 0201 (1997) "Coding character set for information exchanging for 7-bit and 8-bit"
(14) JIS X 0221-1:2001 (2001) "Universal Multiple-Octet Coded Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane"(ISO/IEC 10646-1:2000)
(15) JIS X 0208:1997 (1997) " 7-bit and 8-bit double byte coded KANJI sets for information interchange"
(16) JIS X 0212:1990 (1990) "Code of the supplementary Japanese graphic character set for information interchange"
(17) JIS X 0213:2000 (2000) "7-bit and 8-bit double byte coded extended Kanji sets for information interchange"
(18) JIS X 0213:2000/AMENDMENT 1:2004 "7-bit and 8-bit double byte coded extended KANJI sets for information interchange (Amendment 1) "
(19) ISO/IEC 646:1991(1991) " Information technology - ISO 7-bit coded character set for information interchange"
(20) ISO/IEC 14496-2 (2003) " Information technology - Coding of audio-visual objects - Part 2: Visual"
(21) ISO/IEC 14496-3 (2003) "Information technology - Coding of audio-visual objects - Part 3: Audio"
(22) GRAPHICS INTERCHANGE FORMAT(sm) Version 89a (c)1987,1988,1989,1990Copyright CompuServe Incorporated Columbus, Ohio ${ }^{3}$

1 (http://www.w3.org/pub/WWW/TR/REC-png-multi.html)
2 (ftp://swrinde.nde.swri.edu/pub/mng/documents/mng-0.96-19990718-pdg.html)
3 (http://www.w3.org/Graphics/GIF/spec-gif89a.txt)

## Part 3 Coding of Caption and Superimpose

## Contents

Chapter 1 Purpose ..... 147
Chapter 2 Scope ..... 148
Chapter 3 Definitions and Abbreviation ..... 149
3.1 Definitions ..... 149
3.2 Abbreviations ..... 149
Chapter 4 Presentation function of caption and superimpose ..... 150
Chapter 5 Character coding ..... 152
5.1 Format ..... 152
5.2 Character set ..... 152
5.3 Size ..... 152
5.4 Coloring ..... 152
5.5 Character encoding scheme ..... 152
5.6 Control code ..... 153
Chapter 6 Coding of graphics ..... 156
6.1 Coding of geometric graphics ..... 156
6.2 Coding of bitmap graphics ..... 156
Chapter 7 Coding of definition data ..... 157
7.1 Coding of DRCS ..... 157
7.2 Coding of color map ..... 157
7.3 Coding of synthesized sound data ..... 157
7.4 Coding of ROM sound ..... 157
Chapter 8 Initialization ..... 158
Chapter 9 Transmission of caption and superimpose ..... 161
9.1 Recommended transmission method and assumed operation ..... 161
9.1.1 Caption and superimpose ..... 161
9.1.2 Assumed transmission operation ..... 161
9.2 Structure of data group ..... 161
9.3 Data group data ..... 162
9.3.1 Caption management data ..... 162
9.3.2 Caption statement data ..... 165
9.4 Structure of data unit ..... 166
9.5 Relationship of independent PES and time control mode ..... 167
9.6 Descriptor of SI/PSI in transmission of caption and superimpose. ..... 167
9.6.1 Data component descriptor ..... 167
9.6.2 Data content descriptor. ..... 168
References ..... 170

## Chapter 1 Purpose

This standard specifies the coding scheme of caption and superimposes as part of the data broadcasting, which is carried out as part of the digital broadcasting that is specified as Japanese standard.

## Chapter 2 Scope

This standard is applied for the coding scheme of caption and superimposes in data broadcasting carried out as part of the digital broadcasting.

## Chapter 3 Definitions and Abbreviation

### 3.1 Definitions

Following definitions are used in this standard.

Synthesized sound:	A function to play music using sound generation device such as electron-   ic sound using information of basic element of sound pitch, length, and   loudness and additional element such as timbre.
Asynchronous PES:	PES without PTS
Audio PES:	Audio ES by packet format.
Color map:	Color information table for converting from the index value to the physi-   cal values (same as CLUT).
Color map data:	Data to be set to color map.
Color map data unit data:	Color map data of data unit format.
Geometric:	Graphics coding to draw graphics combining graphics description com-   mand.
Independent PES:	PES to transmit stream for data broadcasting (specified in Volume 3.)
Roll-up mode:	A service to convert caption data transmitted in a page format into a line   format to present caption in a pre-configured small area, typically in a   rectangle with three lines height. When the fourth line appears, the first
line disappears.	
Synchronous PES:	PES with PTS
Video PES:	Video ES by packet format.

### 3.2 Abbreviations

AIFF	Audio Interchange File Format
CLUT	Color Look Up Table
DRCS	Dynamically Redefinable Character Sets
ES	Elementary Stream
PCM	Pulse Code Modulation
PES	Packetized Elementary Stream
PNG	Portable Network Graphics
PSI	Program Specific Information
PTS	Presentation Time Stamp
SI	Service Information
TS	Transport Stream

## Chapter 4 Presentation function of caption and superimpose

Among service to display characters overlapping on video of television broadcasting, service related to contents of video is called caption and all others is called superimpose. When transmitting and coding, these are not classified, and both of them are called caption generally.

Presentation function of the caption is shown in Table 4-1.
Table 4-1 Presentation function of caption

Display   function	Format	$1920 \times 1080,960 \times 540,1280 \times 720,720 \times 480$ (each of them is mixed   with vertical and horizontal writing format)   In subtitle to be transmitted in the 8 unit code system : kanji, hiragana,   katakana, symbol, alphanumerical, Greece characters, Russian charac-   ters, ruled line, DRCS.   In caption transmitted using UTF-8 : character set to be defined in the   UCS and DRCS   Plural typeface can be designated   By DRCS graphics
	Font   Supplemental   Characters (Gaiji)   Character display   size   Coloring	Size designation and deformation in pixel unit, standard, $1 \times 2,2 \times 1,2 \times$   $2,1 / 2 \times 1$, and $1 / 2 \times 1 / 2$ are directly designated using control code.   256 colors are displayed simultaneously (color map used, output: color   value of YCBCR and $\alpha$ value (8-bit x 4))   Each character (outer frame of character or character display block)
Character color-   ing unit   Character attrib-   ute   Graphics	Reversing polarity, flashing, underline, enclosure, shading, bold, italic,   bold and italic   Geometric, bitmap	
Display   control	Timing control   Switching control	Display timing, erase timing   Cut, dissolve, wipe, slide, and roll
Others	Language   Music data	up to 8 languages per 1 ES   For coding synthesized sound, coding method shall be in accordance   with standard method of transmission related to television superimpose   broadcasting (ARIB STD-B5).   PCM (AIFF-C)

Table 4-2 Caption display mode

Display mode		Display function
When re-   ceived	Automatic display	Always displayed during reception irrelevant to viewer's operation
	Automatic non-display	Always non-displayed during reception irrelevant to viewer's op-   eration
	Selectable display	Displayed according to the viewer's operation and receiver unit   setting (or non-displayed)
	Automatic dis-   play/Non-display un-   der specific condition	Displayed (or non-displayed) according to specific condition in the   receiver unit side
When re-   cording and   playback	Automatic display	Recorded automatically when recording and always displayed ir-   relevant to viewer's operation when playing back
	Automatic non-display	Non-displayed when playback
	Selectable display	Recorded automatically when recording and displayed (or non-   displayed) by the viewer's operation when playback

By combining display mode at a time of reception and recording playback, following five functions from a to e shown below, related to control function of caption display, proposed by ARIB Enhanced data broadcasting working group is achieved.

Table 4-3 Example of caption display control function

$$
\begin{array}{|l}
\hline \text { a Always displayed (both in reception and recording playback) } \\
\hline \text { b Always displayed when reception and can be erased in recording playback } \\
\hline \text { c Displayed (or non-displayed) according to viewer's operation } \\
\hline \text { d Displayed (or non-displayed) under specific condition in the receiver unit side } \\
\hline \text { e Not displayed when reception and displayed when recording playback } \\
\hline
\end{array}
$$

## Chapter 5 Character coding

### 5.1 Format

Vertical, horizontal and mixture of these two writing format in resolution of $1920 \times 1080,960 \times 540$, $1280 \times 720$ and $720 \times 480$ should be supported.

Table 5-1 Display formats and display-area size

Display format	Size of display area
$1920 \times 1080$	W(Width) $1920 \times$ H(Height) 1080
$960 \times 540$	W 960 $\times$ H 540
$1280 \times 720$	W $1280 \times$ H 720
$720 \times 480$	W 720 $\times$ H 480

Initial drawing position in the formats above is the first position of the first line determined by the character size.

Display format of vertical writing and horizontal writing can be mixed in one density format but not mixed in different density formats.

### 5.2 Character set

Standard character set in 8 bit code should be kanji, hiragana, katakana, symbol, alphanumeric, Greece characters, Russian characters, box drawing, and DRCS. Supported character set can be changed to others depending on the language.
Character set for subtitles using UTF-8 should be the character set defined in the UCS and DRCS.

### 5.3 Size

Character size can be designated in pixel. Character deformation can be directly designated in width $1 / 2 \times$ height $1 / 2$ (small size), $1 / 2 \times 1$ (middle size), $1 \times 1$ (standard), $2 \times 1$ (double width), $1 \times 2$ (double height), $2 \times 2$ (double width and height). Furthermore, character deformation can be designated control code.

### 5.4 Coloring

Coloring is made in each character (outer frame of character or character display block).
By using the color map, 256 colors in maximum can be displayed simultaneously (output: YCBCR $\alpha$ (8 bit x 4)).

### 5.5 Character encoding scheme

For character coding, 8 bit code or UTF- 8 shall be used.

### 5.6 Control code

Control code used for caption is in compliance with Volume 1, Part 2 of this standard. Types of control code for caption are listed in Table 5-2. BEL (bell), CAN (cancel), CDC (conceal control), PLD (Partially Line Down) and PLU (Partially Line Up) should not be used. Function of TCC is partially changed as shown in Table 5-3. In normal Captioning system, characters between UED (invisible data embedded control) of $<03 / 0\rangle$ and $<03 / 1>$ and UED control code are ignored.

In addition to those control codes, extended control code shown in Table 5-4 can be used.
Table 5-2 Range of control code

Control code set	Types of used control code
C0 Control code	NUL, APB, APF, APD, APU, APR, PAPF, APS, CS, ESC, LS1,   LS0, SS2, SS3
C1 control code	BKF, RDF, GRF, YLF, BLF, MGF, CNF, WHF,   COL, POL, SSZ, MSZ, NSZ, SZX, FLC, WMM, TIME (STM,   TMD, DTM, OTM, PTM are not used), MACRO, RPC, STL, SPL,   HLC, CSI
Extension control   code (CSI)	SWF, RCS, ACPS, SDF, SDP, SSM, SHS, SVS, GSM, GAA, TCC   (function is changed), CFS, ORN, MDF, XCS, PRA, SRC, CCC,   SCR, UED

Note: In the subtitle using UTF-8, LS0, LS1, SS2, SS3 control codes are not used

Table 5-3 Changing function of switching controls (TCC)

TCC	Switching control	Switching mode of caption is designated using parameter P1 (1 code), switching direction of caption is designated using parameter P2 (1 code) and switching time of caption is designated using parameter P3 (1 or plural codes).   Switching method of the whole display picture constructed of caption statement data including each character, character line (character group) or switching control code after the switching control code is designated. End of the character line of character group is immediately before the next switching control (TCC). (To return to the initial condition, cutting each character is designated.)   Code sequence: CSI P1 I1 P2 I2 P31~P3i I3 F   CSI: $\quad 09 / 11$ (control sequence introducer)   P1: $\quad 03 / 0 \sim 03 / 10$ switching mode designation   $03 / 3$ : cutting each character, 03/1: dissolving each character,   $03 / 2$ : sliding each character, 03/3: cutting character group,   $03 / 4$ : dissolving character group, $03 / 5$ : wiping character group, $03 / 6$ : whole picture cut, $03 / 7$ : whole picture dissolve, $03 / 8$ : whole picture wipe, $03 / 9$ : whole picture slide, $03 / 10$ : whole picture roll   03/0 $\sim 03 / 3$ switching direction   $03 / 0$ : from left to right, $03 / 1$ : from right to left, 03/2: from up to down, 03/3: from down to up   P31 $\sim$ P3i: $\quad 03 / 0 \sim 03 / 9$ designating switching time (decimal in 0.1 sec. unit)   I1 ~ I2: $\quad 03 / 11$ (middle character)   I3: $\quad 02 / 0$ (middle character)   F: $\quad 06 / 2$ (final character)   *In P3, 03/0-03/9 indicates 0 to 9.   Whole screen means the rectangle area designated by SDF and SDP. Slide and roll is made within the rectangle area and drawing other than the rectangle area is not made. In case of cutting each character, cutting character group and whole screen cut, I1 to P3 are omitted.   In case of dissolving each character, dissolving character group and whole picture dissolve, I2 and P2 are omitted.   Designation of switching control to the whole picture is placed in the head of the statement data unit at the beginning of the data group and switching control is not designated again in the same data group. Time control (excluding ETM) is not made.

Table 5-4 Added extension control code (CSI)

SCR	Scroll designation	Scroll mode of the caption is designated using parameter P1 (1 code) and scroll speed is designated using parameter P 2 ( 1 or plural codes).   Coding sequence: CSI P1 I1 P21~P2i I2 F   CSI: $\quad 09 / 11$ (control sequence introducer)   P1: 03/0: fixed display (without scroll)   $03 / 1$ : one line scroll to character direction (without roll out)   $03 / 2$ : one line scroll to character direction (with roll out)   $03 / 3$ : whole display scroll to line direction (without roll out)   03/4: whole display scroll to line direction (with roll out)   P21 ~P2i: $\quad 03 / 0 \sim 03 / 9$ : scroll speed (logic picture element/sec., decimal)   I1:   I2: $\quad 02 / 0$ (midder)   F: $\quad 06 / 7$ (final character)   *In P2, 03/0 to $03 / 9$ indicates 0 to 9 .   Scroll is made within the rectangle area designated by SDF and SDP and drawing other than the rectangle area is not made.   In case without roll out, stop scrolling after the final character is displayed.   In case with roll out, scroll continues until characters disappear on the display.

## Chapter 6 Coding of graphics

### 6.1 Coding of geometric graphics

Description command graphics coding using geometric shall be in compliance with Volume 1, Part 2 of this standard.

### 6.2 Coding of bitmap graphics

Bitmap graphics-coding should be in compliance with PNG coding defined in Volume 1, Part 2 of this standard, adding position header (position_header) and flashing header (flc_header). Syntax of bitmap graphics coding is shown in Table 6-1.

Table 6-1 Syntax of bitmap graphics coding

Syntax	No. of bits	Mnemonic
```bitmap_data(){ position_header(){ x_position y_position } flc_header(){ num_of_flc_colors for(\overline{i}=0;\overline{i}<num_of_flc_colors;i++){ color_index } } for (j=0;j<M;j++){ png_data_bytes } }```	16 16 8	simsbf   simsbf   uimsbf   uimsbf   bslbf

x_position : x coordinate of PNG drawing start position when left upper angle of the display area is 0 . When this value is negative, area of negative coordinates is not displayed on the picture.
y_position : y coordinate of PNG drawing start position when left upper angle of the display area is 0 . When this value is negative, area of negative coordinates is not displayed on the picture.
num_of_flc_colors : Number of color to be flashed.
color_index : Index value of the color to be flashed.
png_data_bytes : PNG coding data. File format of PNG coding data should be in compliance with PNG coding defined in Volume 1, Part 2 of this standard.

Chapter 7 Coding of definition data

7.1 Coding of DRCS

Coding of DRCS shall be in compliance with Volume 1, Part 2 of this standard.

7.2 Coding of color map

For coding of color map, Clause 10.2.7 "Color map data coding" of ARIB STD-B5 should be used with modification of the color value from RGB to Y, CB and CR and enhancement of placement of α immediately after Cr of the sequence of color value YCBCR to support half transparent color (α value). Structure of color map data-unit data is shown in Figure 7-1. In Figure 7-1, PB means byte data of data unit data and should be transmitted PB1, PB2 and PB3 ... in order.

Figure 7-1 Structure of color map data unit data

7.3 Coding of synthesized sound data

Coding of synthesized sound data should be in compliance with ARIB STD-B5 "Standard television data multiplex broadcasting by transmission method using vertical blanking interval".

7.4 Coding of ROM sound

ROM sound to indicate the flash provided by superimpose should be built-in sound of the receiver unit which is engaged to playback by the control code of character coding.

Chapter 8 Initialization

Any initialization shall be in compliance with Table 8-1. Initial status as a result of an initialization shall be as shown in Table 8-2.

Table 8-1 Data header, data unit and control code and initialization

		Display	Playback of synthesized sound	Definition data	Declaration data	Invocation and designation of the code	operation	state
Data header	Caption control when updated	O	O	O	O			
	Caption statement			O (Note 1)	O			O (Note 5)
Data unit	Text					O (Note 2)	$\begin{array}{\|l} \hline \mathrm{O} \\ \quad \text { (Note 2, 7) } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \quad \text { (Note 2, 6) } \\ & \hline \end{aligned}$
	Geometric					O (Note 3)	O (Note 3)	O (Note 7)
Control code	Clear screen (CS)	O (Note 7)				O (Note 7)	O (Note 7)	O (Note 7)
	Selection of format (SWF)					O	O	O (Note 4)

Note 1: When definition data exists in the caption management, initialized in its status.
Note 2: Initialized for character coding
Note 3: Initialized for geometric graphics coding
Note 4: Initialized for character coding excluding display format, macro designation and switching control
Note 5: Initialized only for switching control and scroll control
Note 6: Exclude switching control
Note 7: In the roll-up mode, no initializing operation should be done.

Table 8-2 Initial status

Item	Initial status		
Display picture	Display picture	(Cleared screen) Pattern Background color (0) Background color Transparent Flashing No area assigned Luster Transparent (television video) 	
	Display operation	Blink Stop status Time control Not operated	
Synthesized sound		stop	
Definition data	DRCS	Data cleared	
	Color map	Color map default value specified otherwise	
	Synthesized sound	Default value specified otherwise	
Declaration data	Macro definition	Default macro statement specified otherwise (Clause 2.3 in ARIB STD-B3)	
	Geometric macro statement definition	All NUL	
Invocation and designation of code	Character coding	Designation G0 Kanji system set G1 Alphanumeric set G2 Hiragana set G3 Macro code set Invocation GL LS0 (G0) GR LS2R (G2) C0	
	Geometric graphics coding	C0 NUL and CS C1 MACRO and TIME GL Graphics description command code set GR Geometric macrocode set One-valued operand 1 byte Multi-valued operand 4 byte	
operation	Character coding	Operation position Time control Character repetition	Designated for each font No Operation status No Operation status
	Geometric graphics coding	Drawing point Origin of display area Blink Finish status for all drawing color Time control No Operation status	
state	Character coding	Display format Designated by caption management data Character size 1 x 1 (standard) Palette number 0 (COL 02/0 04/0) Foreground color Maximum brightness white (CMLA 7) Background color Transparent (CMLA 8) Half foreground color Defined in the operational guideline Half background color Defined in the operational guideline Flushing control Flushing end (FLC 04/15) Underline control Underline end and mosaic Enclosure control Division finished (SPL) Enclosure control finished (HLC 04/0) Polarity control Normal polarity (POL 04/0) Write mode NEW writing (WMM 04/0) Macro designation Macro definition finished (MACRO 04/15) Composition control Composition finished (CSI 03/0 02/0 05/4) Character spacing Length to character direction in the	

Item	Initial status	
		Line spacing character display block Length to character direction in the character display block Character deformation Without deformation (CSI 03/1 03/0 03/11 03/1 03/0 02/0 04/2) Coloring block Whole display block (CSI 03/0 02/0 05/13) Scroll designation (SCR) Fixed Display (End of Scroll designation) Definition of code string substituted by external character (XCS) End of definition (XCS 03/1 I1 F)
	Coding of geometric graphics	Dimension 2 Logic picture $\mathrm{dx}=0$, dy $=0$ element size Color mode 1 (only forward color, pallet number 0, CMLA 7 maximum brightness white) Line texture Solid line Texture pattern Highlight Completely painted out Macro designation (MACRO 04/15) Without highlight process Macro definition finish

Chapter 9 Transmission of caption and superimpose

9.1 Recommended transmission method and assumed operation

9.1.1 Caption and superimpose

Caption and superimpose can be transmitted in three types of PES (independent, video, and audio). For transmission method of caption and superimpose, independent PES is recommended.

9.1.2 Assumed transmission operation

Transmission method of caption and superimpose shown below specifies the format in PES_data_byte so that multiple language and display mode can be conveyed in a single ES. However, in digital broadcasting, it is possible that caption data of single language and display mode occupies one ES and that selection of caption language, etc., is achieved by selection of ES according to the information provided in SI/PSI. When such operation is made, caption and superimpose data of single language and display mode shall be transmitted by the method specified in this clause for PES and descriptor(s) in SI/PSI shall control the information of caption data.

9.2 Structure of data group

Caption data is data-grouped by the structure shown in Table 9-1 and transmitted as payload of independent PES (asynchronous/synchronous type). One caption data is composed of 256 data groups maximum.

Table 9-1 Data group

Syntax	No. of bits	Mnemonic
data_group()\{		
data_group_id	6	uimsbf
data_group_version	2	bslbf
data_group_link_number	8	uimsbf
last_data_group_link_number	8	uimsbf
data_group_size		
for(i=0;i<N;i++)\{	16	uimsbf
data_group_data_byte	8	bslbf
CRC_16	16	rpchof
$\}$		

Semantics of data group:
data_group_id (Data group identification; DGI): This 6-bit field indicates data group identification and identifies types of caption management data and caption statement data. Table 9-2 shows allocation of data group identification to each caption data. Data group is switched to group A and group B each time when the caption management data is updated.

Table 9-2 Correspondence to caption data and data group identification

Caption data type	Data group identification (DGI)	
	Group A	Group B
Caption management	0×0	0×20
Caption statement (1st language)	0×1	0×21
Caption statement (2nd language)	0×2	0×22
Caption statement (3rd language)	0×3	0×23
Caption statement (4th language)	0×4	0×24
Caption statement (5th language)	0×5	0×25
Caption statement (6th language)	0×6	0×26
Caption statement (7th language)	0×7	0×27
Caption statement (8th language)	0×8	0×28

data_group_version (Data group version): This 2-bit field indicates version of the data group. Each time when content is updated within the same DGI, 1 shall be added.
data_group_link_number (Data group link number): When a large amount of caption data which cannot be contained in one data group is transmitted, the caption data is fragmented to multiple data groups for transmission. This 8 -bit field indicates link number of the data groups. The first data group link number of the data group in the caption data shall be 0×00.
last_data_group_link_number (Last data group link number): This 8-bit field indicates the last data group link number of the caption data in the data group.
data_group_size (Data group size; DGS): This field indicates the size of following data of the data group in byte..
data_group_data_byte (Data group data; DGD): Data group data to be transmitted.
CRC_16 (Redundant bit; CRC): This is a cyclic redundancy check code in 16-bit and the generation polynomial should be as follows.

$$
G(X)=x^{16}+x^{12}+x^{5}+1
$$

The coded block starts from the beginning of the data_group_id and ends at the end of the data_group_data_byte. When number of the information bits of the coded block for error detection is ($\mathrm{n}-16$), the values of the information bits are coefficients of the terms for the following expression:

$$
\mathrm{C}_{\mathrm{n}-1} \mathrm{X}^{\mathrm{n}-1}+\mathrm{C}_{\mathrm{n}-2} \mathrm{X}^{\mathrm{n}-2}+----+\mathrm{C}_{16} \mathrm{X}^{16}
$$

and the expression is divided by the generation polynomial $\mathrm{G}(\mathrm{X})=\mathrm{X}^{16}+\mathrm{X}^{12}+\mathrm{X}^{5}+1$, CRC_16 is given by the coefficients of the remaining polynomial $\mathrm{S}_{15} \mathrm{X}^{15}+\mathrm{S}_{14} \mathrm{X}^{14}---\mathrm{S}_{0} \mathrm{X}^{0}$ and located in the order starting from the most significant digit after the data_group_data_byte.

9.3 Data group data

Caption service is transmitted by caption management data and caption statement data of zero or up to 8 languages.

9.3.1 Caption management data

Caption management data consists of caption management data header indicating language or transmission mode of the caption and zero or more than one data unit, following it. Structure of caption management data is shown in Table 9-3.

Table 9-3 Structure management data

Syntax	No. of bits	Mnemonic			
```caption_management_data(){ TMD Reserved if(TMD=='10'){ OTM Reserved } num_languages for(i=0;i<N;i++){ language_tag reserved DMF if (DMF=='1100' \|	DMF=='1101'		DMF=='1110'){ DC } ISO_639_language_code Format TCS rollup_mode } data_unit_loop_length for(i=0;i<N; ;i++) { data_unit() }```	$\begin{aligned} & 2 \\ & 6 \end{aligned}$   36   4   8   3   1   4   8   24   4   2   24	bslbf   bslbfuimsbf   bslbfuimsbfbslbfbslbfbslbfbslbfuimsbfbslbfbslbfbslbfuimsbf

Semantics of caption management data:
TMD (Time control mode): This 2-bit field indicates time control mode when receiving and playback. Time control mode is listed in Table 9-4.

Table 9-4 Time control mode

b2	b1	Time control mode	Reference
0	0	Free	Playback time is not restricted to synchronize to the clock.
0	1	Real time	Playback time is in accordance with the time of the clock,   which is calibrated by clock signal (TDT). Playback time is   given by PTS.
1	0	Offset time	Playback time added with offset time should be the new   playback time and played back according to the calibrated   clock using the clock signal.
1	1	(Reserved)	Undecided

OTM (Offset time): This 36 -bit field indicates offset time to add to the playback time when the clock control mode is in offset time mode. Offset time is coded in the order of hour, minute, second and millisecond, using nine 4-bit binary coded decimals (BCD).
num_languages (Number of languages): Number of languages included in the ES of the caption and superimpose.
language_tag (Identification of language): Numbers to identify the language. 0 means the 1st language, and 7, the 8th language, and so on.
DMF (Display mode): This 4-bit field indicates the display mode of the caption statement. Display mode is indicated in reception and recording playback in 2 bit each. The modes controlled by DMF are listed in Table 9-5.

Table 9-5 Display mode

b4 b3	b2 b1	Display mode
$0 \quad 0$		Automatic display when received
$\begin{array}{ll}0 & 1\end{array}$		Non-displayed automatically when received
10		Selectable display when received
11		Automatic display/non-display under specific condition when received
	$0 \quad 0$	Automatic display when recording and playback
	01	Non- displayed automatically when recording and playback
	10	Selectable display when recording and playback
	11	Reserved

DC (Display condition designation): This 8-bit field indicates condition of display or non-display when the display mode is "Automatic display/non-display under specific condition". Display condition is shown in Table 9-6.

Table 9-6 Designation of display condition

Display condition designation (DC)	Display condition
$0 \times 00$	Message display of attenuation due to rain
$0 \times 01-0 \times F F$	Specified otherwise

ISO_639_language_code (Language code): This 24-bit field indicates the language code corresponding to the language identified by the language_tag in three-letters representation specified in ISO 639-2. Each character is coded in 8-bit representation of ISO 8859-1 and inserted to 24bit field in that order.

Example: Japanese is expressed as "jpn" by 3-letter code and is coded as follows:

$$
\text { "0110 } 1010011100000110 \text { 1110" }
$$

format (display format): This 4-bit field indicates the initial status of the display format of caption display screen. The status of the display format is listed in Table 9-7.

Table 9-7 Display format

b4 b3 b2 b1	Display format
$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	Horizontal writing in standard density
$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	Vertical writing in standard density
$\begin{array}{llll}0 & 0 & 1 & 0\end{array}$	Horizontal writing in high density
$\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$	Vertical writing in high density
$\begin{array}{lllll}0 & 1 & 0 & 0\end{array}$	Horizontal writing of Western language
$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	Horizontal writing in $1920 \times 1080$
$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	Vertical writing in $1920 \times 1080$
$\begin{array}{llll}1 & 0 & 0 & 0\end{array}$	Horizontal writing in $960 \times 540$
$\begin{array}{llll}1 & 0 & 0 & 1\end{array}$	Vertical writing in $960 \times 540$
$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$	Horizontal writing in $1280 \times 720$
$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	Vertical writing in $1280 \times 720$
$\begin{array}{llll}1 & 0 & 1 & 0\end{array}$	Horizontal writing in $720 \times 480$
$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	Vertical writing in $720 \times 480$

TCS (Character coding): This 2-bit field indicates the type of character coding. Character coding is listed in Table 9-8.

Table 9-8 Character coding

b2	b1	Character coding
0	0	8bit-code
0	1	Coding system using UCS(\#1)
1	0	Reserved
1	1	Reserved

\#1: UTF-8, etc.
rollup_mode: This 2-bit field indicates whether the caption data is transmitted in the roll-up mode or not. The applicable values are shown in Table 9-9.

Table 9-9 Roll-up mode

b2	b1	Roll-up mode
0	0	Non roll-up
0	1	Roll-up
1	0	Reserved for future use
1	1	Reserved for future use

data_unit_loop_length (Data unit loop length): This is 24-bit indicates the byte length of the following data unit. When data unit is not placed, the value should be 0 .
data_unit() (Data unit): This data_unit() is valid data unit to all the caption program transmitted in the same ES.

### 9.3.2 Caption statement data

Caption statement data is the body of the caption and consists of caption statement data header composed of presentation time information and following one or more data unit groups. Structure of caption statement data is shown in Table 9-9.

Table 9-10 Caption statement data


Semantics of caption statement data:
TMD (Time control mode): This 2-bit field indicates time control mode when receiving and playback.
STM (Presentation start-time): This 36-bit field indicates presentation start time of the following caption statement. Presentation start time is coded in the order of hour, minute, second and millisecond, using nine 4 -bit binary coded decimals (BCD). Time to finish presentation is designated by the character code of the caption statement.
data_unit_loop_length (Data unit loop length): This is 24-bit field and specifies the byte length of the following data unit.
data_unit () (Data unit): This is the data unit of the caption statement. At least one data unit should be placed.

### 9.4 Structure of data unit

Structure of data unit used for caption management data and caption statement data is shown in Table 9-10.

## Table 9-11 Data unit

Syntax	No. of bits	Mnemonic
data_unit()\{		
unit_separator	8	uimsbf
data_unit_parameter	8	uimsbf
data_unit_size   for(i=0;i<data_unit_size;i++) $\{$   data_unit_data_byte	24	uimsbf
$\}$	8	bslbf

Semantics of data unit:
unit_separator (Data unit separator code: US): Data unit separator code should be 0x1F.
data_unit_parameter (Data unit parameter): Data unit parameter identifies the type of data unit. Types of data unit used in the caption, data unit parameter and function are listed in Table 9-11.

Table 9-12 Types of data unit

Data unit	Data unit   parameter	Function
Statement   body	0x20	Character data of caption statement is transmitted. Setting data   of display area in caption management is transmitted.
Geometric	$0 \times 28$	Geometric graphics data is transmitted
Synthesized   sound	$0 \times 2$ c	Synthesized sound information data is transmitted.
1-byte DRCS	0x30	1-bite DRCS pattern data is transmitted.
2-byte DRCS	0x31	2-bite DRCS pattern data is transmitted.
Color map	0x34	Color map data is transmitted.
Bit map	0x35	Bitmap data is transmitted.

data_unit_size (Data unit size): Data unit size indicates byte length of the following data unit data.
data_unit_data_byte (Data unit data): Data unit data to be transmitted.

Assignment of data unit to data group is listed in Table 9-13.

Table 9-13 Assignment of the data unit to data group

Contents of data unit	Data group data	
	Caption management	Caption statement
Statement body	O	O
Geometric	-	O
Additional sound	-	O
1-byte DRCS	O	O
2-byte DRCS	O	O
Color map	O	O
Bit map	-	O

### 9.5 Relationship of independent PES and time control mode

Relationship of time control mode (TMD) in case of transmission of data group by asynchronous and synchronized PES and synchronization method of receiver unit is shown in Table 9-13.

Table 9-14 Synchronization method of time control mode and receiver unit

Transmission	Asynchronous type PES	Synchronized PES	
		Receiver unit which PTS can be processed	Receiver unit which PTS cannot be processed
Free	Asynchronous	Program synchronous (Synchronized by PTS)	Synchronization impossible (Displayed immediately after reception)
Real time/offset time	Time synchronous (Synchronized by STM)	Program synchronous (Synchronized by PTS)	Time synchronous (Synchronized by STM)

Operation of TMD and STM for PES (asynchronous type/synchronized type) should be specified otherwise.

### 9.6 Descriptor of SI/PSI in transmission of caption and superimpose

In case of transmission of caption and superimpose employing 8bit-code characters and UTF-8 by independent PES, it is recommended to allocate data_component_id ${ }^{1}$, and to describe information belowin the specified field of both data component descriptor and data contents descriptor where its format is specified for each coding method.

### 9.6.1 Data component descriptor

The additional identification information (additional_data_component_info) of data component descriptor in PMT has the syntax shown in Table 9-14 for the transmission of caption and superimpose.

[^2]Table 9-15 Additional data component of caption and superimpose

Syntax	No. of bits	Mnemonic
additional_arib_caption_info()\{		
DMF	4	bslbf
Reserved	2	bslbf
Timing	2	bslbf
$\}$		

Semantics of additional_arib_caption_info():
DMF (Display mode flag): This field indicates display mode at a time of reception and of recording playback. When the same DMF value is used without changing in the caption management data for the whole language in the ES, its DMF value is described. When this DMF value of caption management changes, it should be b4b3b2b1 $=" 1111$ ". When there is ' 00 ' in b 2 b 1 or b 4 b 3 of DMF bit, bit representation should be b4b3b2b1 = "0011". In this case, it indicates that language which automatic presentation is needed is included in the ES.
Timing (display timing): This field indicates timing of caption display. Definition of timing value is shown in Table 9-15

Table 9-16 Definition of timing value

Timing value	Meaning
00	Asynchronous
01	Program synchronous
10	Time synchronous

### 9.6.2 Data content descriptor

In transmission of caption, one descriptor shall be prepared for one ES for EIT data content descriptor. However, when it is not scheduled beforehand such as superimpose of flash, operation without inserting data content descriptor in EIT is acceptable.
Syntax of selector area of data content descriptor for caption and superimpose transmission is shown in Table 9-16.

Table 9-17 Data construction of selector area

Syntax	No. of bits	Mnemonic
arib_caption_info() $\{$   num_languages   for(i=0;i<N;i++) $\{$   language_tag   reserved	8	uimsbf
DMF	3	bslbf
ISO_639_language_code	1	bslbf
$\}$	4	bslbf
$\}$	24	uimsbf

Semantics of arib_caption_Info():
num_languages: Numbers of languages included in this caption and superimpose ES.
language_tag: This tag identifies language by number. The value ' 0 ' represents the first language and the value ' 7 ' represents the 8th language.

DMF: When the DMF value of the caption management data of the language indicated by the language_tag does not change in ES, its caption management DMF value is described after each language_tag. When the value changes, it should be ' 1111 '. When there is ' 00 ' in b2b1 or b4b3 of DMF bit, bit representation should be b4b3b2b1 = "0011". "0011" indicates that automatic presentation is needed.
ISO_639_language_code (Language code): This 24-bit field indicates the language code of the language identified by the language_tag in three-letter code specified in ISO 639-2. Each character is coded in 8-bit representation of ISO 8859-1 and inserted to this 24-bit field in that order.

Example: Japanese is expressed as "jpn" by 3-letter code and is coded as follows:

$$
\text { "0110 } 1010011100000110 \text { 1110" }
$$

## References

(1) ARIB STD-B5 Version 1.0 "STANDARD TELEVISION DATA MULTIPLE BROADCASTING USING VERTICAL BLANKING DURATION TRANSMISSION METHOD" (1996 August)
(2) ISO 639-2 (1996) Codes for the representation of names of languages - Part 2: Alpha-3 code
(3) DAVIC 1.4 Specification Part9 (1998) (Annex B): AIFF-C
(4) ISO 8859-1 (1987) Information processing - 8 bit single-byte coded graphic character sets Part 1: Latin alphabet No. 1

DATA CODING AND TRANSMISSION SPECIFICATION FOR DIGITAL BROADCASTING

ARIB STANDARD
ARIB STD-B24 VERSION 6.2-E1
FASCICLE1
(December 2015)

This Document is based on the ARIB standard of "Data Coding and Transmission Specification for Digital Broadcasting" in Japanese edition and translated into English in May 2017.

Published by
Association of Radio Industries and Businesses
Nittochi Bldg. 11F
1-4-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan
TEL 81-3-5510-8590
FAX 81-3-3592-1103
Printed in Japan
All rights reserved


[^0]:    ${ }^{1}$ Three-dimensional multi-channel audio is defined only in STD-B32.

[^1]:    2 The basic character set includes characters of which operation started before the specification was revised into 4.4 Version.

[^2]:    ${ }^{1}$ The data_component_id of caption and superimpose coding scheme specified by ARIB shall be $0 \times 0008$.

