

3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects;

Specification of the TUAK algorithm set:
A second example algorithm set for the 3GPP authentication

and key generation functions f1, f1*, f2, f3, f4, f5 and f5*;
Document 4: Report on the design and evaluation

 (Release 12)

3GPP TR 35.934 V12.0.0 (2014-12)
Technical Specification

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 2

Keywords
GSM, UMTS, LTE, Security, Algorithm

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2014, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 3

Contents
Foreword .. 5

1 Scope .. 6

2 References .. 6

3 Definitions and abbreviations .. 7
3.1 Definitions ... 7
3.2 Abbreviations... 7

4 Structure of this report .. 8

5 Background to the design and evaluation work .. 8

6 Summary of algorithm requirements ... 9
6.0 Introduction ... 9
6.1 General requirements for 3GPP cryptographic functions and algorithms (as stated for MILENAGE) 9
6.2 Authentication and key agreement functions (as stated for MILENAGE) .. 9
6.2.0 Introduction .. 9
6.2.1 Implementation and operational considerations ... 10
6.2.2 Type of algorithm ... 10
6.2.2.1 f1 .. 10
6.2.2.2 f1* .. 10
6.2.2.3 f2 .. 10
6.2.2.4 f3 .. 10
6.2.2.5 f4 .. 10
6.2.2.6 f5 .. 11
6.2.2.7 f5* .. 11
6.3 Tuak-specific requirements .. 11
6.3.1 Difference from MILENAGE ... 11
6.3.2 256-bit key support ... 11
6.3.3 Operator customization ... 11
6.3.4 Implementation and operational considerations ... 11

7 Overview of the Tuak design... 12

8 Design rationale .. 12
8.0 Introduction ... 12
8.1 Brand new design, or design based on an existing public algorithm? ... 13
8.2 Block cipher, stream cipher, MAC or hash function? .. 13
8.3 Which hash function? ... 13
8.4 What sort of Keccak function to use ... 14
8.5 Keccak parameter selection .. 14
8.6 Security evaluation of Keccak .. 15
8.6.0 Introduction .. 15
8.6.1 What about the internet stories about NIST weakening SHA-3? ... 15
8.7 A note on IPR .. 15
8.7.1 Keccak IPR .. 15
8.7.2 Tuak IPR .. 16
8.8 Padding bits ... 16
8.9 Flexible input and output sizes.. 16
8.10 Operator customization .. 16

9 Independent security and performance evaluation.. 16
9.0 Introduction ... 16
9.1 Independent security evaluation .. 16
9.2 Independent SIM card performance evaluation ... 17

10 More notes on implementation and side channel attacks .. 17
10.1 Protecting implementations against side channel attacks ... 17
10.2 Software implementation and the NIST SHA-3 standard ... 18

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 4

11 Conclusions .. 18

Annex A: Change history ... 18

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 5

Foreword
This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 6

1 Scope
The present document (together with three accompanying documents, [8], [9] and [10] describes the design rationale,
and presents evaluation results, on the Tuak algorithm set [5] – a second example set of algorithms which may be used
as the authentication and key generation functions f1, f1*, f2, f3, f4, f5 and f5*, e.g. as an alternative to MILENAGE.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-
specific.

- For a specific reference, subsequent revisions do not apply.

- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2] 3GPP TS 33.102: "3G Security; Security Architecture", (available
at http://www.3gpp.org/ftp/specs/html-info/33102.htm).

[3] 3G TS 33.105 (V 3.4.0) (2000-07): "3G Security; Cryptographic Algorithm Requirements
(Release 1999)".

[4] 3GPP TS 35.206: "3G Security; Specification of the MILENAGE algorithm set: An example
algorithm set for the 3GPP authentication and key generation functions f1, f1*, f2, f3, f4, f5 and
f5*; Document 2: Algorithm specification", (available at http://www.3gpp.org/ftp/Specs/html-
info/35206.htm).

[5] 3GPP TS 35.231: "3G Security; Specification of the Tuak algorithm set: A second example
algorithm set for the 3GPP authentication and key generation functions f1, f1*, f2, f3, f4, f5 and
f5*; Document 1: Algorithm specification", (available at http://www.3gpp.org/ftp/Specs/html-
info/35231.htm).

[6] 3GPP TS 35.232: "3G Security; Specification of the Tuak algorithm set: A second example
algorithm set for the 3GPP authentication and key generation functions f1, f1*, f2, f3, f4, f5 and
f5*; Document 2: Implementers' Test Data", (available at http://www.3gpp.org/ftp/Specs/html-
info/35232.htm).

[7] 3GPP TS 35.233: "3G Security; Specification of the Tuak algorithm set: A second example
algorithm set for the 3GPP authentication and key generation functions f1, f1*, f2, f3, f4, f5 and
f5*; Document 3: Design Conformance Test Data", (available
at http://www.3gpp.org/ftp/Specs/html-info/35233.htm).

[8] "Security Assessment of Tuak Algorithm Set", Guang Gong, Kalikinkar Mandal, Yin Tan and
Teng Wu, included as an accompanying document to the present report (available
at http://www.3gpp.org/ftp/Specs/archive/35_series/35.935/SAGE_report/Secassesment.zip).

[9] "Performance Evaluation of the Tuak algorithm in support of the ETSI SAGE standardisation
group", Keith Mayes, included as an accompanying document to the present report (available
at http://www.3gpp.org/ftp/Specs/archive/35_series/35.936/SAGE_report/Perfevaluation.zip).

[10] "Performance Evaluation of the Tuak algorithm in support of the ETSI SAGE standardisation
group – extension report", Keith Mayes, included as an accompanying document to the present
report (available
at http://www.3gpp.org/ftp/Specs/archive/35_series/35.936/SAGE_report/Perfevaluationext.zip).

http://www.3gpp.org/ftp/specs/html-info/33102.htm
http://www.3gpp.org/ftp/Specs/html-info/35206.htm
http://www.3gpp.org/ftp/Specs/html-info/35206.htm
http://www.3gpp.org/ftp/Specs/html-info/35231.htm
http://www.3gpp.org/ftp/Specs/html-info/35231.htm
http://www.3gpp.org/ftp/Specs/html-info/35232.htm
http://www.3gpp.org/ftp/Specs/html-info/35232.htm
http://www.3gpp.org/ftp/Specs/html-info/35233.htm
http://www.3gpp.org/ftp/Specs/archive/35_series/35.935/SAGE_report/Secassesment.zip
http://www.3gpp.org/ftp/Specs/archive/35_series/35.936/SAGE_report/Perfevaluation.zip
http://www.3gpp.org/ftp/Specs/archive/35_series/35.936/SAGE_report/Perfevaluationext.zip

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 7

[11] "Note on side-channel attacks and their countermeasures", G. Bertoni, J. Daemen, M. Peeters, G.
van Assche (available at http://keccak.noekeon.org/NoteSideChannelAttacks.pdf).

[12] "Building power analysis resistant implementations of Keccak", G. Bertoni, J. Daemen, M.
Peeters, G. van Assche (available at http://csrc.nist.gov/groups/ST/hash/sha-
3/Round2/Aug2010/documents/papers/BERTONI_KeccakAntiDPA.pdf).

[13] Wassenaar Arrangement on Export Controls for Conventional Arms and Dual-Use Goods and
Technologies, http://www.wassenaar.org.

[14] "Announcing Draft Federal Information Processing Standard (FIPS) 202, SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions, and Draft Revision of the
Applicability Clause of FIPS 180-4, Secure Hash Standard, and Request for Comments", NIST,
28th May 2014, available at https://www.federalregister.gov/articles/2014/05/28/2014-
12336/announcing-draft-federal-information-processing-standard-fips-202-sha-3-standard-
permutation-based.

[15] "Early Symmetric Crypto (ESC) seminar 2013" (available at
https://www.cryptolux.org/mediawiki-esc2013/index.php/ESC_2013)

[16] "The KECCAK sponge function family" (available at http://www.noekeon.org)

[17] https://www.cdt.org/blogs/joseph-lorenzo-hall/2409-nist-sha-3

[18] http://yro.slashdot.org/story/13/09/28/0219235/did-nist-cripple-sha-3

[19] https://www.schneier.com/blog/archives/2013/10/will_keccak_sha-3.html

[20] http://keccak.noekeon.org/yes_this_is_keccak.html

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A
term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Keccak: algorithm selected as the winner of the SHA-3 competition

MILENAGE: previously designed example algorithm set for the 3GPP Authentication and Key Generation Functions

TOPC: value derived from TOP and K and used within the computations of the functions f1, f1*, f2, f3, f4, f5 and f5*

Tuak: newly designed example algorithm set for the 3GPP Authentication and Key Generation Functions. It should be
pronounced like "too-ack"

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An
abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in
TR 21.905 [1].

AES Advanced Encryption Standard block cipher
AK Anonymity Key
AMF Algorithm Management Field
AuC Authentication Centre
CK Cipher Key
CPU Central Processing Unit
DEMA Differential Electromagnetic Analysis
DPA Differential Power Analysis
IC Integrated Circuit

http://keccak.noekeon.org/NoteSideChannelAttacks.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/BERTONI_KeccakAntiDPA.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/BERTONI_KeccakAntiDPA.pdf
http://www.wassenaar.org/
https://www.federalregister.gov/articles/2014/05/28/2014-12336/announcing-draft-federal-information-processing-standard-fips-202-sha-3-standard-permutation-based
https://www.federalregister.gov/articles/2014/05/28/2014-12336/announcing-draft-federal-information-processing-standard-fips-202-sha-3-standard-permutation-based
https://www.federalregister.gov/articles/2014/05/28/2014-12336/announcing-draft-federal-information-processing-standard-fips-202-sha-3-standard-permutation-based
http://www.noekeon.org/

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 8

IK Integrity Key
K Long lived subscriber unique key
MAC Message Authentication Code
MAC-A MAC for normal authentication vectors
MAC-S MAC for resynchronization vectors
MULTOS Multi-application smart card operating system
NIST National Institute of Standards and Technology
NSA National Security Agency
NVM Non-Volatile Memory
RAM Random Access Memory
RAND Random input parameter to authentication and key generation functions
RES Response value
RNC Radio Network Controller
ROM Read-Only Memory
SAGE Security Algorithms Group of Experts

NOTE: This is an ETSI Technical Committee.

SHA-2 Secure Hash Algorithm already standardized by NIST
SHA-3 Secure Hash Algorithm soon to be standardized by NIST
TOP Tuak Operator Variant Algorithm Configuration Field
SEMA Simple Electromagnetic Analysis
SIM Subscriber Identity Module
SPA Simple Power Analysis
SQN Sequence Number
UICC Universal Integrated Circuit Card
USIM Universal Subscriber Identity Module
XMAC Expected MAC value

4 Structure of this report
The main content of the present document is organized as follows:

- Clause 5 and 6 give the requirements and background that were considered during the design of Tuak – first
recalling the functional and performance requirements that were used for MILENAGE, then noting some
differences and additional points that apply for Tuak.

- Clause 7 gives a brief overview of the Tuak design.

- Clause 8 runs through choices made during the design of Tuak, and the reasons behind those choices.

- Clause 9 introduces independent assessments that have been carried out on the security and performance of
Tuak. The full independent assessment reports are included as companion documents to this one.

- Clause 10 gives some further observations on software implementation and protection against side channel
attacks.

- Clause 11 concludes with an overall assessment of Tuak's fitness for purpose.

Three further documents [8], [9] and [10] complete the present document, as explained in clause 9.

5 Background to the design and evaluation work
The 3rd Generation Partnership Project (3GPP) is a global initiative dedicated to the development of specifications for
the next generations of cellular mobile systems. Integration of strong security services is an important feature of this
system and the general security architecture is defined in ref. [2]. The implementation of these security services should
be based on a variety of cryptographic functions/algorithms.

Out of the full algorithm suite, only the UMTS encryption algorithms (f8) and the UMTS integrity algorithms (f9) are
fully standardized. f0 represents a random number generation algorithm, and has no standardization or interoperability

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 9

requirements at all. The remaining cryptographic functions for authentication and key agreement (f1 – f5*) are allocated
to the Authentication Centre (AuC) and the USIM; this means that the functions are proprietary to the home
environment, and there is no need for formal standardization of these algorithms. However, there are good reasons to
have a well trusted example set of functions available for this purpose, for use by operators that choose not to develop
their own solutions. The MILENAGE algorithm set [4] was created to meet this need.

There are also good reasons to have a second trusted example set of (f1 – f5*) algorithms available:

- To have a fallback already in place in case MILENAGE is ever compromised.

- In particular, for the embedded UICC, where it may be sensible to have two strong algorithms installed on the
platform and available for selection by subsequently loaded USIM applications. This provides choice to
operators; it also provides resilience against future cryptanalysis of either algorithm, in devices that may have a
long lifetime in the field.

The Tuak algorithm set [5], [6] and [7] has been created to serve as this second trusted example algorithm set.

6 Summary of algorithm requirements

6.0 Introduction
When MILENAGE was created, the requirements specification was taken from [3]. Clauses 6.1 and 6.2 below
reproduce the main requirements necessary to understand the present document. Clause 6.3 describes some new
requirements that came into play when designing Tuak.

6.1 General requirements for 3GPP cryptographic functions and
algorithms (as stated for MILENAGE)

The functions should be designed with a view to their continued use for a period of at least 20 years. Successful attacks
with a workload significantly less than exhaustive key search through the effective key space should be impossible.

The designers of above functions should design algorithms to a strength that reflects the above qualitative requirements.

Legal restrictions on the use or export of equipment containing cryptographic functions may prevent the use of such
equipment in certain countries.

It is the intention that UE and USIMs that embody such algorithms should be free from restrictions on export or use, in
order to allow the free circulation of 3G terminals. Network equipment, including RNC and AuC, may be expected to
come under more stringent restrictions. It is the intention that RNC and AuC that embody such algorithms should be
exportable under the conditions of the Wassenaar Arrangement, see reference [13].

6.2 Authentication and key agreement functions (as stated for
MILENAGE)

6.2.0 Introduction
The mechanisms for authentication and key agreement described in clause 6.3 of [2] require the following
cryptographic functions:

f1 The network authentication function;

f1* The re-synchronization message authentication function;

f2 The user authentication function;

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 10

f3 The cipher key derivation function;

f4 The integrity key derivation function;

f5 The anonymity key derivation function;

f5* The anonymity key derivation function for re-synchronization.

6.2.1 Implementation and operational considerations
The functions f1–f5* should be designed so that they can be implemented on an IC card equipped with an 8-bit
microprocessor running at 3,25 MHz with 8 kbyte ROM and 300 byte RAM and produce AK, XMAC-A, RES, CK and
IK in less than 500 ms execution time.

6.2.2 Type of algorithm

6.2.2.1 f1

f1: the network authentication function

f1: (K; SQN, RAND, AMF) → MAC-A (or XMAC-A)

f1 should be a MAC function. In particular, it should be computationally infeasible to derive K from knowledge of
RAND, SQN, AMF and MAC-A (or XMAC-A).

6.2.2.2 f1*

f1*: the re-synchronization message authentication function

f1*: (K; SQN, RAND, AMF) → MAC-S (or XMAC-S)

f1* should be a MAC function. In particular, it should be computationally infeasible to derive K from knowledge of
RAND, SQN, AMF and MAC-S (or XMAC-S).

6.2.2.3 f2

f2: the user authentication function

f2: (K; RAND) → RES (or XRES)

f2 should be a MAC function. In particular, it should be computationally infeasible to derive K from knowledge of
RAND and RES (or XRES).

6.2.2.4 f3

f3: the cipher key derivation function

f3: (K; RAND) → CK

f3 should be a key derivation function. In particular, it should be computationally infeasible to derive K from
knowledge of RAND and CK.

6.2.2.5 f4

f4: the integrity key derivation function

f4: (K; RAND) → IK

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 11

f4 should be a key derivation function. In particular, it should be computationally infeasible to derive K from
knowledge of RAND and IK.

6.2.2.6 f5

f5: the anonymity key derivation function

f5: (K; RAND) → AK

f5 should be a key derivation function. In particular, it should be computationally infeasible to derive K from
knowledge of RAND and AK.

The use of f5 is optional.

6.2.2.7 f5*

f5*: the anonymity key derivation function for re-synchronization

f5*: (K; RAND) → AK

f5* should be a key derivation function. In particular, it should be computationally infeasible to derive K from
knowledge of RAND and AK.

The use of f5* is optional.

6.3 Tuak-specific requirements

6.3.1 Difference from MILENAGE
It is important that this new algorithm should be fundamentally different from MILENAGE, in such a way that any
advance in cryptanalysis that impact the security of one algorithm set should be unlikely to impact the security of the
other.

6.3.2 256-bit key support
MILENAGE was designed for UMTS, before LTE had been standardized. UMTS supports only a 128-bit K value, but
LTE allows K to be either 128 or 256 bits long. It was therefore felt highly desirable for Tuak to accommodate either a
128-bit or a 256-bit K.

6.3.3 Operator customization
MILENAGE allows some customization by each mobile operator. In particular, each operator needs to choose its own
value of an "Operator Variant Algorithm Configuration Field" called OP. There are also other constants within the
MILENAGE algorithm that can be varied if required. This operator customization serves two main purposes:

- It means that USIMs for different operators are not interchangeable, either through trivial modification of inputs
and outputs or by reprogramming of a blank USIM.

- By keeping some algorithm details secret, some attacks (such as side channel attacks like power analysis)
become a little harder to carry out.

This operator customization was not a required feature when MILENAGE was being design, but it has been well
received by operators. It was therefore felt desirable to include a similar operator customization feature in Tuak.

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 12

6.3.4 Implementation and operational considerations
The performance and complexity requirements stated at the time of the MILENAGE design stipulate a maximum run
time of 500 ms on "an IC card equipped with an 8-bit microprocessor running at 3,25 MHz with 8 kbyte ROM and
300 byte RAM". As noted in [9], however:

Technology has moved on quite significantly and it might be quite hard to even find a SIM chip that has these
minimal capabilities, and indeed many do not have ROM any more. Furthermore the target is a little ambiguous and
could be interpreted that if you ran all the functions in sequence each could take 500 ms. It is also not clear how
much of the ROM and RAM can be used. A more appropriate and modern target could be:

"The functions f1–f5 and f1* should be designed so that they can be implemented on a midrange microprocessor IC
card (typically 16-bit CPU), occupying no more than 8kbytes nonvolatile-memory (NVM), reserving no more than
300 bytes of RAM and producing AK, XMACA, RES, CK and IK in less than 500 ms total execution time."

7 Overview of the Tuak design
The detailed specifications of the 3GPP Tuak algorithms can be found in [5]. The following diagram illustrates the
design of the Tuak algorithms. See clause 8.10 for an explanation of TOP and TOPC.

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 13

Figure 1

8 Design rationale

8.0 Introduction
This clause outlines the decision process that led to the Tuak design.

8.1 Brand new design, or design based on an existing public
algorithm?

For obvious reasons of confidence in the design – both SAGE's confidence and the public's confidence – it was
preferable to base the new authentication and key agreement algorithm on a well studied existing public algorithm.

8.2 Block cipher, stream cipher, MAC or hash function?
While it is possible in principle to use a public key algorithm as a building block, this would intuitively be a strange
choice in a naturally symmetric key context, and a brief analysis indicated only dizadvantages. So in practice it makes
sense to take a symmetric key or keyless algorithm as the starting point.

Stream ciphers would be a poor fit here – they typically need a pre-run before output can be extracted, making them
expensive for short data sizes, even though they may be very efficient for large quantities of data. And there are no
dedicated MAC functions (as opposed to e.g. block ciphers in a MAC mode) with enough public trust. So, realistically,
the candidate building blocks are block ciphers or hash functions.

At first glance, block ciphers might seem a more natural starting point, since it might be possible to slot them directly
into the MILENAGE framework, in place of AES. But after looking at the obvious choices of well established public
domain block ciphers, it appeared that they all had limitations:

- CAMELLIA, SERPENT and ARIA all seem too close to AES – if an advance in cryptanalytic theory threatens
AES, it was thought too likely that it would threaten these algorithms too. One of SAGE's fundamental design
goals was to avoid this.

- IDEA, SEED and TEA / XTEA don't support a 256-bit key. Accommodating a 256-bit key was considered
desirable, since LTE allows that.

- CAST, CLEFIA and RC6 seemed to be encumbered with IPR. SAGE preferred to choose a building block that
was open for public use without IPR considerations.

- BLOWFISH and TWOFISH use key dependent S-boxes, which SAGE felt were likely to add implementation or
computational overheads.

- MARS was felt by many commentators during the AES competition not to be well suited for smart card
implementation.

Note that there is no need for any decryption process as part of the authentication and key agreement algorithm. A one-
way function, such as a hash function, is fine for this purpose.

So SAGE determined on a hash function as the best type of building block to use.

8.3 Which hash function?
The ideal starting point would be a hash function that was well studied, reasonably efficient, and appeared to have a
good security margin. When SAGE began the design process, the SHA-3 competition was still under way, with five
finalists selected (BLAKE, Grøstl, JH, Keccak and Skein); the other natural candidate was SHA-2. Grøstl was quickly
dismissed as being too close to AES. Once Keccak was selected as the SHA-3 winner, however, it would have been

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 14

perverse to choose any of the other SHA-3 finalists without a clear reason to do so, and there was no such clear reason –
Keccak seemed an excellent candidate for our purposes. So, SAGE's choice was between Keccak and SHA-2.

Either of Keccak or SHA-2 would have been a good choice for the core building block. Referring back to the reasons
above for rejecting various block ciphers, it was noted that both Keccak and SHA-2 are very different from AES in their
designs; can easily accommodate a 256-bit key; are believed to be free of restrictive IPR; and could be reasonably
compact and efficient on smartcard platforms. There were arguments in favour of each:

- SHA-2 had been in the public eye for longer. However, Keccak was more intensively scrutinised during the
SHA-3 competition.

- More implementations were available for SHA-2.

- Keccak could become a particular focus for attack after being announced as the SHA-3 winner.

- Keccak's recommended MAC construction is simpler and more efficient than the HMAC construction that would
normally be used to create a MAC from SHA-2. (Simpler MAC constructions are possible for SHA-2, and would
in practice be fine for our purposes … but would be less well trusted than HMAC.)

- There were already publications showing how to realize Keccak in a way that protects against side channel
attacks, with a modest implementation overhead. Protecting SHA-2 against side channel attacks seemed less
straightforward, and the complexity of doing so less clear. Side channel attacks are of course very important for
USIM-based authentication and key agreement algorithms. Clause 9 gives more information about this subject.

- Although both SHA-2 and Keccak currently seem to have a good security margin, the design philosophy and
security arguments for Keccak are significantly clearer.

- The large input and output size of the Keccak permutation allow a very simple, one-round construction.

The SAGE chairman took the opportunity to canvas the opinion of a number of eminent symmetric cryptography
specialists, at the Early Symmetric Crypto conference [15]. A substantial majority expressed a preference for Keccak as
the more robust choice with the sounder security justification (and that is true even excluding the Keccak designers who
were there.).

8.4 What sort of Keccak function to use
Keccak is a family of "cryptographic sponge functions" [16]. Each instance of Keccak has a particular permutation at its
core. The SHA-3 submission takes a particular permutation from this family, and proposes a hash function based on the
sponge paradigm.

SAGE could have waited for the SHA-3 standard to be published, and used SHA-3 in its entirety as a building block for
Tuak. There might have been some advantage in doing so, in terms of public trust in the design. This would have
entailed a long delay, however: NIST did not publish their draft SHA-3 standard until May 2014 [14], with public
comments invited until August 2014, and the final standard to appear some time later. Moreover, using the exact
input/output interface of SHA-3 would probably make the design significantly more complicated than it needed to be.
SAGE decided instead to base our design on the Keccak sponge function, which in practice is what provides all the
security assurance for SHA-3.

8.5 Keccak parameter selection
Keccak permutations are available in seven different sizes, operating on blocks of 25, 50, 100, 200, 400, 800 or
1600 bits. For the sizes of input and output parameters needed for Tuak, 800-bit or 1600-bit block sizes were the only
two worthy of consideration.

Once a block size B is chosen, there are two further parameters in the choice of Keccak function, called the rate R and
the capacity C, with the constraint that R + C = B. The capacity C is a security parameter: to achieve 256-bit security
against all attacks (reflecting the maximum subscriber key size of 256 bits in LTE), it is necessary to choose a capacity
of at least 2 × 256 = 512. The rate R indicates how many bits of input can be fed into each instance of the permutation,
and how many bits of output can be extracted from each instance of the permutation.

With a 1600-bit block size B, the rate R can be up to 1600 – 512 = 1088 bits; this is easily enough to accommodate all
the inputs and outputs of each Tuak function in a single Keccak permutation instance. With an 800-bit block size B,

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 15

however, the rate R can be at most 800 – 512 = 288 bits; this would mean that several Keccak permutation iterations
would be needed to accommodate all the required inputs and outputs. So, while the 800-bit block size might naïvely
seem more efficient than the 1600-bit size, in practice this would not be the case.

Another clear argument in favour of the 1600-bit permutation block size is that this is what will be used in SHA-3.
Choosing a smaller block size would risk unfavourable comparison with SHA-3, and a public impression that Tuak was
not as secure as it could have been. It is also true that using the same block size as SHA-3 makes it more likely that
implementations developed for the NIST standards can be largely reused for Tuak.

For these reasons SAGE selected the 1600-bit permutation size for Keccak. Being able to accommodate all inputs and
outputs in a single Keccak permutation allows a rather simpler construction than was necessary for MILENAGE, where
the basic building block was a 128-bit block cipher.

The largest set of inputs or outputs that one might want to deal with in a single Tuak function was 816 bits in total,
implying that a rate R ≥ 816 should be chosen for greatest efficiency. SAGE could, therefore, have chosen C up to 784.
After a brief discussion with the Keccak design team (who were very helpful and responsive throughout our design
process), SAGE decided to choose C = 512, for close alignment with the forthcoming NIST standards. Setting C = 512
means that the "rightmost" 512 input bits of each 1600-bit Keccak input block are always set to zero, and that no Tuak
output bits are ever extracted from the "rightmost" 512 bits of the 1600-bit Keccak permutation output. (See figure 1 in
clause 7.)

However, it can be argued that in practice Tuak has an effective capacity of at least 768 bits – see clause 3.2 of the Tuak
algorithm specification [5].

8.6 Security evaluation of Keccak

8.6.0 Introduction
Obviously, a very intensive public expert evaluation of Keccak took place during the SHA-3 competition – there is no
need to quote from this in detail here. SAGE's job as Tuak designers was to make sure that Tuak benefited from the
security of Keccak, and the expert and general public confidence in Keccak, with good efficiency and to provide the
required functionality.

8.6.1 What about the internet stories about NIST weakening SHA-3?
There were suggestions from some quarters in 2013 that NIST (maybe under influence from NSA) were deliberately
weakening SHA-3 (or, as some people carelessly wrote, deliberately weakened Keccak). See for example [17], [18] and
[19].

SAGE always felt that these "reduced security" concerns were unjustified. One may refer also to the Keccak team's own
response in [20]. Here they made it clear:

- Firstly, that NIST have made no changes at all to Keccak itself, which remains exactly as the Keccak team
designed it.

- Secondly, that what NIST were doing was to propose choices of the parameters C and R (capacity and rate, as
mentioned above) that give either a very strong or an extremely strong level of security, while not unnecessarily
hampering performance; and that these proposed choices are all part of the original Keccak family proposal,
again with no changes at all.

- Thirdly: although it's true that the original SHA-3 submission used a larger value for the capacity C, this was
done to meet an originally stated but frankly rather meaningless security target – namely, the target of 512-bit
pre-image resistance for the 512-bit hash function. Conventional 512-bit hash function designs like SHA-512 do
naturally achieve this target (unless "broken") – which is probably why it was stated as a requirement in the
original NIST call for submissions – but the sponge function design approach used by Keccak does not. Instead,
a capacity of C bits leads to a security level of C/2 bits against all attacks, so C=512 implies a security level of
256 bits against all attacks, including 256-bit pre-image resistance. NIST recognized – and the Keccak team
themselves repeatedly argued – that 256-bit pre-image resistance is strong enough for all purposes, and that
setting C any higher than 512 just reduces performance without serving any real purpose.

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 16

However, public confidence is very important. And as it turned out, NIST decided in the end that in the interests of
public confidence it was necessary to revert to the original (less efficient but ostensibly more secure) capacity value. So
the draft SHA-3 standard [14] uses the original higher capacity value, exactly as in the original Keccak proposal for
SHA-3, and there is no longer any plausible reason to suspect any intentional weakness.

8.7 A note on IPR

8.7.1 Keccak IPR
Submitters to the SHA-3 competition signed a statement that, amongst other text, promised: "Should my submission be
selected for SHA-3, I hereby agree not to place any restrictions on the use of the algorithm, intending it to be available
on a worldwide, non-exclusive, royalty-free basis."

8.7.2 Tuak IPR
SAGE is not aware of any IPR relating to the construction of Tuak from the Keccak sponge function core.

8.8 Padding bits
As well as the 3GPP-specified input fields, and the 512 zero bits dictated by the choice of capacity explained in clause
8.5, it is necessary to make up the 1600-bit input block to the Keccak permutation by including padding bits. (Note that
these should be fixed padding bits, the same at the Authentication Centre end and the USIM end – one cannot use
random padding bits here.) The choice of padding bits has little effect on security in this context. Again following
discussion with the Keccak designers, SAGE chose padding bits that were expected to align with NIST's, to give the
best possible chance that implementations developed for the NIST standards could be reused as much as possible for
Tuak.

The publication by NIST of the draft SHA-3 standard [14] is encouraging in this regard – see clause 10.2.

8.9 Flexible input and output sizes
As already mentioned, it was desirable to accommodate the 256-bit subscriber key option in LTE (which is not yet
widely used, but could become more popular in future). But also, bearing this 256-bit security level in mind, it was felt
that it was prudent also to allow for some possible future increases in the sizes of other 3GPP security parameters, such
as the cipher key CK, the integrity key IK and the Message Authentication Codes. This was a nice-to-have, not a hard
requirement on the Tuak design, but since 1600-bit Keccak can accommodate these extensions with no loss of
efficiency, they were included as options in Tuak. There is no immediate expectation that other 3GPP standards will
incorporate these extended security parameter sizes, and indeed it may never happen – but the option is there if
required.

8.10 Operator customization
Clause 6.3.3 explains how MILENAGE allows some customization by each mobile operator, and the benefits that this
brings. In MILENAGE, each operator needs to choose its own value of an "Operator Variant Algorithm Configuration
Field" called OP. In similar vein, Tuak includes an Operator Variant Algorithm Configuration Field, this time called
TOP.

MILENAGE also included a feature whereby an intermediate value OPC is derived from OP and the secret key K, and it
is sufficient for the SIM card to be programmed with OPC rather than with OP itself. This means that an attacker who is
able to extract OPC from one card does not learn OP or OPC for other cards. An equivalent feature was included for
Tuak, with a value (called TOPC in the case of Tuak) being derived from TOP and K, in such a way that a SIM card can
include only TOPC, and TOP itself need never appear on a SIM.

The algorithm specification [5] also describes a very straightforward way in which Tuak could be modified to provide a
higher security margin if ever required (if, say, some unexpected cryptanalysis emerged against Keccak), by performing
multiple iterations of the Keccak sponge function instead of just one. At the moment, though, Keccak is widely agreed
to have a very high security margin, and it is considered unlikely that this further-strengthened version will be needed.

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 17

9 Independent security and performance evaluation

9.0 Introduction
Independent expert analysis has been carried out on both the security and the SIM card performance of Tuak.

9.1 Independent security evaluation
A team at the University of Waterloo, led by Professor Guang Gong, carried out an independent assessment of the
security of Tuak. Their extensive report [8] is included as an accompanying document to this one.

This report considers known cryptanalytic attacks, as well as a new type of attack, and concludes that the Tuak
algorithms appear to resist each of these attacks. It also provides a security proof, showing that any weakness in Tuak
would translate to a weakness in Keccak.

The conclusion is that "the algorithms in Tuak perfectly inherit the good security performance from Keccak and it can
be used with confidence as message authentication functions and key derivation function".

9.2 Independent SIM card performance evaluation
An independent assessment of Tuak's performance and implementation complexity on SIM card platforms was carried
out by the Smart Card Centre at Royal Holloway University of London. The resulting report [9] is again included as an
accompanying document to this one.

The report concludes that:

- If Tuak is implemented as native code, the speed and performance goals can be met very comfortably, without
the need for a crypto coprocessor, including on a low-end platform (16-bit or even 8-bit).

- Native code implementation does appear to be necessary to achieve the performance targets – an implementation
on MULTOS cards was a lot slower.

- Although the study could not include a deep assessment of side channel attack resistance, there appears to be
plenty of performance overhead available to allow for software protection measures to be included, if the
platform itself does not give enough protection. Some brief notes are included about timing attacks, and it seems
that a careful native code implementation should be able to protect against timing attacks without too much
trouble (side channel attacks are explored a bit further in clause 9).

An extension to the above report was also produced by the same author. The extension report [10] is again included as
an accompanying document to this one.The extension report:

- Confirms that, using older, more resource limited smart card platforms than were used in the study for [9], it is
still possible to meet the Tuak speed and performance goals in native code, without the need for a crypto
coprocessor.

- Describes initial investigations into possible side channel data leakage from an implementation with no software
protection.

- Indicates (tentatively) that, with the possible exception of cards using certain chips that claim innovative
hardware defences against side-channel and fault attacks, it is likely that smart card/chips will require some
protection against side channel data leakage in the software implementation of Tuak.

- Confirms that there should be a performance overhead available to accommodate such software protection
measures, with an efficient implementation of Tuak.

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 18

10 More notes on implementation and side channel
attacks

10.1 Protecting implementations against side channel attacks
Some consideration of side channel attacks was given in [9] and [10] – see clause 9.2.

Research results also exist concerning how Keccak implementations can be protected against side channel attacks, and
these results are directly useful for Tuak implementations too.

[11] considers power attacks – Simple Power Analysis (SPA) and Differential Power Analysis (DPA), including higher
order DPA – and electromagnetic radiation attacks – Simple Electromagnetic Analysis (SEMA) and Differential
Electromagnetic Analysis (DEMA), including higher order DEMA. Although the paper isn't exclusively about Keccak,
Keccak is given particular attention, and the indications are that protecting an implementation, particularly in software,
can be reasonably straightforward and efficient.

[12] gives further consideration to power analysis, and shows how implementations of Keccak in either hardware or
software can be efficiently protected.

It was already noted in clause 9.2 that protection against "standard" timing attacks seems fairly straightforward. Keccak
implementations do not naturally make use of large table lookups, so cache timing attacks should not be a concern.

10.2 Software implementation and the NIST SHA-3 standard
When the Tuak design was finalized, NIST had selected Keccak as the winner of the SHA-3 competition, but the SHA-
3 standard had not been published. SAGE liaised closely with the Keccak design team, to understand what the
forthcoming NIST standard was likely to include, and to align the Tuak specification with the anticipated SHA-3
standard as far as possible.

At the time of writing this design and evaluation report, NIST has now published a draft SHA-3 standard, together with
a request for comments. If this draft standard remains unchanged, then the alignment of Tuak will be very good. In
particular, as well as drop-in replacements for the current SHA-2 hash family, the draft NIST standard includes two
"Extendable-Output Functions" SHAKE-128 and SHAKE-256, which allow for variable-size outputs. All of the
padding and formatting lines up perfectly for us, so that the Tuak functions can all be defined very straightforwardly in
terms of SHAKE-256; thus a Tuak implementation could directly and quickly be built from a SHAKE-256
implementation.

11 Conclusions
Keccak was selected as the winner of the SHA-3 computation after several years of intense scrutiny by the world's
cryptographic community. It is widely agreed by this expert community to have a very clear and well thought out
security design, and a very high margin of security. The Tuak design makes direct and straightforward use of Keccak,
and clearly inherits Keccak's security benefits. Tuak uses a very strong choice of parameters from the Keccak function
family, in line with what is now expected to be standardized by NIST. SAGE consulted with the Keccak design team
several times, including sharing its proposed final design with them, giving extra assurance that Tuak (a) in no way fail
to capture the security benefits of Keccak and (b) aligns with likely SHA-3-related implementations of Keccak as far as
possible. Independent security assessment reinforces this position.

Implementation and performance aspects (including side channel attack resistance) seem comfortable too, based on
independent assessment of Tuak and published research on Keccak.

In summary, SAGE believes that Tuak meets its targets of security, performance, and resilience as a complement to
MILENAGE.

3GPP

3GPP TR 35.934 V12.0.0 (2014-12) 19

Annex A:
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
Nov
2014

 First TR version 0.1.0

Dec
2014

SA#66 SP-
140816

 Version for information and approval 0.1.0 1.0.0

 Version after approval 1.0.0 12.0.0

	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Structure of this report
	5 Background to the design and evaluation work
	6 Summary of algorithm requirements
	6.0 Introduction
	6.1 General requirements for 3GPP cryptographic functions and algorithms (as stated for MILENAGE)
	6.2 Authentication and key agreement functions (as stated for MILENAGE)
	6.2.0 Introduction
	6.2.1 Implementation and operational considerations
	6.2.2 Type of algorithm
	6.2.2.1 f1
	6.2.2.2 f1*
	6.2.2.3 f2
	6.2.2.4 f3
	6.2.2.5 f4
	6.2.2.6 f5
	6.2.2.7 f5*

	6.3 Tuak-specific requirements
	6.3.1 Difference from MILENAGE
	6.3.2 256-bit key support
	6.3.3 Operator customization
	6.3.4 Implementation and operational considerations

	7 Overview of the Tuak design
	8 Design rationale
	8.0 Introduction
	8.1 Brand new design, or design based on an existing public algorithm?
	8.2 Block cipher, stream cipher, MAC or hash function?
	8.3 Which hash function?
	8.4 What sort of Keccak function to use
	8.5 Keccak parameter selection
	8.6 Security evaluation of Keccak
	8.6.0 Introduction
	8.6.1 What about the internet stories about NIST weakening SHA-3?

	8.7 A note on IPR
	8.7.1 Keccak IPR
	8.7.2 Tuak IPR

	8.8 Padding bits
	8.9 Flexible input and output sizes
	8.10 Operator customization

	9 Independent security and performance evaluation
	9.0 Introduction
	9.1 Independent security evaluation
	9.2 Independent SIM card performance evaluation

	10 More notes on implementation and side channel attacks
	10.1 Protecting implementations against side channel attacks
	10.2 Software implementation and the NIST SHA-3 standard

	11 Conclusions
	Annex A: Change history

