

3GPP TS 35.201 V8.0.0 (2008-12)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects;

3G Security;
Specification of the 3GPP Confidentiality

and Integrity Algorithms;
Document 1: f8 and f9 Specification

(Release 8)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)2Release 8

Keywords
UMTS, algorithm, KASUMI

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2008, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)3Release 8

Contents
Foreword ..4
Introduction ..4
0 Scope ..6
NORMATIVE SECTION ..7
1 Outline of the normative part ...8
1.1 References.. 8
2 Introductory information ..9
2.1 Introduction.. 9
2.2 Notation ... 9
2.2.1 Radix .. 9
2.2.2 Conventions ... 9
2.2.3 Bit/Byte ordering.. 9
2.2.4 List of Symbols .. 10
2.3 List of Variables .. 10
3 Confidentiality algorithm f8 ...11
3.1 Introduction.. 11
3.2 Inputs and Outputs ... 11
3.3 Components and Architecture.. 11
3.4 Initialisation ... 11
3.5 Keystream Generation ... 12
3.6 Encryption/Decryption... 12
4 Integrity algorithm f9 ...12
4.1 Introduction.. 12
4.2 Inputs and Outputs ... 12
4.3 Components and Architecture.. 13
4.4 Initialisation ... 13
4.5 Calculation... 13
INFORMATIVE SECTION...15

Annex 1 (informative): Figures of the f8 and f9 Algorithms ...16

Annex 2 (informative): Simulation Program Listing ...18

Annex 3 (informative): Change history ...22

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)4Release 8

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The 3GPP Confidentiality and Integrity Algorithms f8 & f9 have been developed through the collaborative efforts of the
European Telecommunications Standards Institute (ETSI), the Association of Radio Industries and Businesses (ARIB),
the Telecommunications Technology Association (TTA), the T1 Committee.

The f8 & f9 Algorithms Specifications may be used only for the development and operation of 3G Mobile
Communications and services. Every Beneficiary must sign a Restricted Usage Undertaking with the Custodian and
demonstrate that he fulfills the approval criteria specified in the Restricted Usage Undertaking.

Furthermore, Mitsubishi Electric Corporation holds essential patents on the Algorithms. The Beneficiary must get a
separate IPR License Agreement from Mitsubishi Electronic Corporation Japan.

For details of licensing procedures, contact ETSI, ARIB, TTA or T1.

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates,
etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction
This specification has been prepared by the 3GPP Task Force, and gives a detailed specification of the 3GPP
confidentiality algorithm f8, and the 3GPP integrity algorithm f9.

This document is the first of four, which between them form the entire specification of the 3GPP Confidentiality and
Integrity Algorithms:

- 3GPP TS 35.201: "3rd Generation Partnership Project; Technical Specification Group Services and
System Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 1: f8 and f9 Specification".

- 3GPP TS 35.202: "3rd Generation Partnership Project; Technical Specification Group Services and System
Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 2:
KASUMI Specification".

- 3GPP TS 35.203: "3rd Generation Partnership Project; Technical Specification Group Services and System
Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 3:
Implementors’ Test Data".

- 3GPP TS 35.204: "3rd Generation Partnership Project; Technical Specification Group Services and System
Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 4: Design
Conformance Test Data".

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)5Release 8

The normative part of the specification of the f8 (confidentiality) and f9 (integrity) algorithms is in the main body of
this document. The annexes to this document are purely informative. Annex 1 contains illustrations of functional
elements of the algorithm, while Annex 2 contains an implementation program listing of the cryptographic algorithm
specified in the main body of this document, written in the programming language C.

The normative part of the specification of the block cipher (KASUMI) on which they are based is in the main body of
Document 2. The annexes of that document, and Documents 3 and 4 above, are purely informative.

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)6Release 8

0 Scope
This specification gives a detailed specification of the 3GPP confidentiality algorithm f8, and the 3GPP integrity
algorithm f9.

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)7Release 8

NORMATIVE SECTION
This part of the document contains the normative specification of the Confidentiality and Integrity algorithms.

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)8Release 8

1 Outline of the normative part
Section 1 introduces the algorithms and describes the notation used in the subsequent sections.

Section 3 specifies the confidentiality algorithm f8.

Section 4 specifies the integrity algorithm f9.

1.1 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document
(including a GSM document), a non-specific reference implicitly refers to the latest version of that document in
the same Release as the present document.

[1] 3GPP TS 33.102 version 3.2.0: "3rd Generation Partnership Project; Technical Specification
Group Services and System Aspects; 3G Security; Security Architecture".

[2] 3GPP TS 33.105 version 3.1.0: "3rd Generation Partnership Project; Technical Specification
Group Services and System Aspects; 3G Security; Cryptographic Algorithm Requirements".

[3] 3GPP TS 35.201: "3rd Generation Partnership Project; Technical Specification Group Services
and System Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity
Algorithms; Document 1: f8 and f9 Specification".

[4] 3GPP TS 35.202: "3rd Generation Partnership Project; Technical Specification Group Services
and System Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity
Algorithms; Document 2: KASUMI Specification".

[5] 3GPP TS 35.203: "3rd Generation Partnership Project; Technical Specification Group Services
and System Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity
Algorithms; Document 3: Implementors’ Test Data".

[6] 3GPP TS 35.204: "3rd Generation Partnership Project; Technical Specification Group Services
and System Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity
Algorithms; Document 4: Design Conformance Test Data".

[7] ISO/IEC 9797-1:1999: "Information technology – Security techniques – Message Authentication
Codes (MACs)".

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)9Release 8

2 Introductory information

2.1 Introduction
Within the security architecture of the 3GPP system there are two standardised algorithms: A confidentiality algorithm
f8, and an integrity algorithm f9. These algorithms are fully specified here. Each of these algorithms is based on the
KASUMI algorithm that is specified in a companion document[4]. KASUMI is a block cipher that produces a 64-bit
output from a 64-bit input under the control of a 128-bit key.

The confidentiality algorithm f8 is a stream cipher that is used to encrypt/decrypt blocks of data under a confidentiality
key CK. The block of data may be between 1 and 20000 bits long. The algorithm uses KASUMI in a form of
output-feedback mode as a keystream generator.

The integrity algorithm f9 computes a 32-bit MAC (Message Authentication Code) of a given input message using an
integrity key IK. The approach adopted uses KASUMI in a form of CBC-MAC mode.

2.2 Notation

2.2.1 Radix
We use the prefix 0x to indicate hexadecimal numbers.

2.2.2 Conventions
We use the assignment operator ‘=’, as used in several programming languages. When we write

 <variable> = <expression>

we mean that <variable> assumes the value that <expression> had before the assignment took place. For instance,

 x = x + y + 3

means

 (new value of x) becomes (old value of x) + (old value of y) + 3.

2.2.3 Bit/Byte ordering
All data variables in this specification are presented with the most significant bit (or byte) on the left hand side and the
least significant bit (or byte) on the right hand side. Where a variable is broken down into a number of sub-strings, the
left most (most significant) sub-string is numbered 0, the next most significant is numbered 1 and so on through to the
least significant.

For example an n-bit MESSAGE is subdivided into 64-bit substrings MB0,MB1…MBi so if we have a message:

0x0123456789ABCDEFFEDCBA987654321086545381AB594FC28786404C50A37…

we have:

 MB0 = 0x0123456789ABCDEF
MB1 = 0xFEDCBA9876543210
MB2 = 0x86545381AB594FC2
MB3 = 0x8786404C50A37…

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)10Release 8

In binary this would be:

 000000010010001101000101011001111000100110101011110011011110111111111110…

with MB0 = 0000000100100011010001010110011110001001101010111100110111101111
MB1 = 1111111011011100101110101001100001110110010101000011001000010000
MB2 = 1000011001010100010100111000000110101011010110010100111111000010
MB3 = 1000011110000110010000000100110001010000101000110111…

2.2.4 List of Symbols
= The assignment operator.

⊕ The bitwise exclusive-OR operation.

|| The concatenation of the two operands.

KASUMI[x]k The output of the KASUMI algorithm applied to input value x
using the key k.

X[i] The ith bit of the variable X. (X = X[0] || X[1] || X[2] || …..).

Yi The ith block of the variable Y. (Y = Y0 || Y1 || Y2 || ….).

2.3 List of Variables
A, B are 64-bit registers that are used within the f8 and f9 functions to hold intermediate values.

BEARER a 5-bit input to the f8 function.

BLKCNT a 64-bit counter used in the f8 function.

BLOCKS an integer variable indicating the number of successive applications of KASUMI that need to be
performed, for both the f8 and f9 functions.

CK a 128-bit confidentiality key.

COUNT a 32-bit time variant input to both the f8 and f9 functions.

DIRECTION a 1-bit input to both the f8 and f9 functions indicating the direction of transmission (uplink or
downlink).

FRESH a 32-bit random input to the f9 function.

IBS the input bit stream to the f8 function.

IK a 128-bit integrity key.

KM a 128-bit constant that is used to modify a key. This is used in both the f8 and f9 functions. (It
takes a different value in each function).

KS[i] is the ith bit of keystream produced by the keystream generator.

KSBi is the ith block of keystream produced by the keystream generator. Each block of keystream
comprises 64 bits.

LENGTH is an input to the f8 and f9 functions. It specifies the number of bits in the input bitstream.

MAC-I is the 32-bit message authentication code (MAC) produced by the integrity function f9.

MESSAGE is the input bitstream of LENGTH bits that is to be processed by the f9 function.

OBS the output bit streams from the f8 function.

PS is the input padded string processed by the f9 function.

REGISTER is a 64-bit value that is used within the f8 function.

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)11Release 8

3 Confidentiality algorithm f8

3.1 Introduction
The confidentiality algorithm f8 is a stream cipher that encrypts/decrypts blocks of data between 1 and 20000 bits in
length.

3.2 Inputs and Outputs
The inputs to the algorithm are given in table 1, the output in table 2:

Table 1: f8 inputs

Parameter Size (bits) Comment
COUNT 32 Frame dependent input

COUNT[0]…COUNT[31]
BEARER 5 Bearer identity BEARER[0]…BEARER[4]
DIRECTION 1 Direction of transmission DIRECTION[0]
CK 128 Confidentiality key CK[0]….CK[127]
LENGTH X181 The number of bits to be encrypted/decrypted

(1-20000)
IBS 1-20000 Input bit stream IBS[0]….IBS[LENGTH-1]

Table 2: f8 output

Parameter Size (bits) Comment
OBS 1-20000 Output bit stream OBS[0]….OBS[LENGTH-1]

3.3 Components and Architecture
(See fig 1 Annex A)

The keystream generator is based on the block cipher KASUMI that is specified in [4]. KASUMI is used in a form of
output-feedback mode and generates the output keystream in multiples of 64-bits.

The feedback data is modified by static data held in a 64-bit register A, and an (incrementing) 64-bit counter BLKCNT.

3.4 Initialisation
In this section we define how the keystream generator is initialised with the key variables before the generation of
keystream bits.

We set the 64-bit register A to COUNT || BEARER || DIRECTION || 0…0

(left justified with the right most 26 bits set to 0).

i.e. A = COUNT[0]…COUNT[31] BEARER[0]…BEARER[4] DIRECTION[0] 0…0

We set counter BLKCNT to zero.

We set the key modifier KM to 0x55555555555555555555555555555555

We set KSB0 to zero.

One operation of KASUMI is then applied to the register A, using a modified version of the confidentiality key.

 A = KASUMI[A]CK ⊕ KM

1 In the sample C-code we treat LENGTH as a 32-bit integer.

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)12Release 8

3.5 Keystream Generation
Once the keystream generator has been initialised in the manner defined in section 3.4, it is ready to be used to generate
keystream bits. The plaintext/ciphertext to be encrypted/decrypted consists of LENGTH bits (1-20000) whilst the
keystream generator produces keystream bits in multiples of 64 bits. Between 0 and 63 of the least significant bits
are discarded from the last block depending on the total number of bits required by LENGTH.

So let BLOCKS be equal to (LENGTH/64) rounded up to the nearest integer. (For instance, if LENGTH = 128 then
BLOCKS = 2; if LENGTH = 129 then BLOCKS = 3.)

To generate each keystream block (KSB) we perform the following operation:

 For each integer n with 1 ≤ n ≤ BLOCKS we define:

 KSBn = KASUMI[A ⊕ BLKCNT ⊕ KSBn-1]CK

 where BLKCNT = n-1

The individual bits of the keystream are extracted from KSB1 to KSBBLOCKS in turn, most significant bit first, by
applying the operation:

 For n = 1 to BLOCKS, and for each integer i with 0 ≤ i ≤ 63 we define:

 KS[((n-1)*64)+i] = KSBn[i]

3.6 Encryption/Decryption
Encryption/decryption operations are identical and are performed by the exclusive-OR of the input data (IBS) with the
generated keystream (KS).

 For each integer i with 0 ≤ i ≤ LENGTH-1 we define:

 OBS[i] = IBS[i] ⊕ KS[i]

4 Integrity algorithm f9

4.1 Introduction
The integrity algorithm f9 computes a Message Authentication Code (MAC) on an input message under an integrity key
IK. There is no limitation on the input message length of the f9 algorithm.

For ease of implementation the algorithm is based on the same block cipher (KASUMI) as is used by the confidentiality
algorithm f8.

4.2 Inputs and Outputs
The inputs to the algorithm are given in table 3, the output in table 4:

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)13Release 8

Table 3: f9 inputs

Parameter Size (bits) Comment
COUNT-I 32 Frame dependent input COUNT-I[0]…COUNT-I[31]
FRESH 32 Random number FRESH[0]…FRESH[31]
DIRECTION 1 Direction of transmission DIRECTION[0]
IK 128 Integrity key IK[0]…IK[127]
LENGTH X192 The number of bits to be ‘MAC’d
MESSAGE LENGTH Input bit stream

Table 4: f9 output

Parameter Size (bits) Comment
MAC-I 32 Message authentication code MAC-I[0]…MAC-I[31]

4.3 Components and Architecture
(See fig 2 Annex A)

The integrity function is based on the block cipher KASUMI that is specified in [4]. KASUMI is used in a chained
mode to generate a 64-bit digest of the message input. Finally the leftmost 32-bits of the digest are taken as the output
value MAC-I.

4.4 Initialisation
In this section we define how the integrity function is initialised with the key variables before the calculation
commences.

We set the working variables: A = 0
and B = 0

We set the key modifier KM to 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

We concatenate COUNT, FRESH, MESSAGE and DIRECTION. We then append a single ‘1’ bit, followed by
between 0 and 63 ‘0’ bits so that the total length of the resulting string PS (padded string) is an integral multiple of 64
bits, i.e.:

PS = COUNT[0]…COUNT[31] FRESH[0]…FRESH[31] MESSAGE[0]…
MESSAGE[LENGTH-1] DIRECTION[0] 1 0*

Where 0* indicates between 0 and 63 ‘0’ bits.

4.5 Calculation
We split the padded string PS into 64-bit blocks PSi where:

 PS = PS0 || PS1 || PS2 || …. || PSBLOCKS-1

We perform the following operations for each integer n with 0 ≤ n ≤ BLOCKS-1:

 A = KASUMI[A ⊕ PSn]IK

 B = B ⊕ A

Finally we perform one more application of KASUMI using a modified form of the integrity key IK.

 B = KASUMI[B]IK ⊕ KM

The 32-bit MAC-I comprises the left-most 32 bits of the result.

 MAC-I = lefthalf[B]

2 In the sample C-code we treat LENGTH as a 32-bit integer.

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)14Release 8

i.e. For each integer i with 0 ≤ i ≤ 31 we define:

 MAC-I[i] = B[i].

Bits B[32]…B[63] are discarded.

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)15Release 8

INFORMATIVE SECTION
This part of the document is purely informative and does not form part of the normative specification of KASUMI.

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)16Release 8

Annex 1 (informative):
Figures of the f8 and f9 Algorithms

COUNT || BEARER || DIRECTION || 0…0

A

CK

BLKCNT=0

KASUMICK KASUMICKKASUMICK

KS[0]…KS[63] KS[64]…KS[127] KS[128]…KS[191]

KASUMI

KASUMICK ⊕ KM

BLKCNT=1 BLKCNT=2 BLKCNT=BLOCKS-1

Figure 1: f8 Keystream Generator

Note: BLKCNT is specified as a 64-bit counter so there is no ambiguity in the expression
A ⊕ BLKCNT ⊕ KSBn-1 where all operands are of the same size. In a practical implementation where
the key stream generator is required to produce no more than 5114 bits (80 keystream blocks) only the
least significant 7 bits of the counter need to be realised.

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)17Release 8

COUNT || FRESH || M E S S A G E || DIRECTION || 1 || 0 … 0

KASUMI KASUMI KASUMIIK IK IK IK KASUMI

KASUMIIK ⊕ KM

MAC-I (left 32-bits)

PS0 PS1 PS2 PSBLOCKS-1

Figure 2: f9 Integrity function

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)18Release 8

Annex 2 (informative):
Simulation Program Listing
Header file

/*---
 * Kasumi.h
 ---/

typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned long u32;

/*----- a 64-bit structure to help with endian issues -----*/

typedef union {
 u32 b32[2];
 u16 b16[4];
 u8 b8[8];
} REGISTER64;

/*------------- prototypes --------------------------------*/

void KeySchedule(u8 *key);
void Kasumi(u8 *data);
u8 * f9(u8 *key,int count,int fresh, int dir,u8 *data,int length);
void f8(u8 *key,int count,int bearer,int dir,u8 *data,int length);

Function f8

/*---
 * F8 - Confidentiality Algorithm
 *---
 *
 * A sample implementation of f8, the 3GPP Confidentiality algorithm.
 *
 * This has been coded for clarity, not necessarily for efficiency.
 *
 * This will compile and run correctly on both Intel (little endian)
 * and Sparc (big endian) machines. (Compilers used supported 32-bit ints)
 *
 * Version 1.0 05 November 1999
 *
 ---/

#include "kasumi.h"
#include <stdio.h>

/*---
 * f8()
 * Given key, count, bearer, direction, data,
 * and bit length encrypt the bit stream
 ---/
void f8(u8 *key, int count, int bearer, int dir, u8 *data, int length)
{
 REGISTER64 A; /* the modifier */
 REGISTER64 temp; /* The working register */
 int i, n;
 u8 ModKey[16]; /* Modified key */
 u16 blkcnt; /* The block counter */

 /* Start by building our global modifier */

 temp.b32[0] = temp.b32[1] = 0;
 A.b32[0] = A.b32[1] = 0;

 /* initialise register in an endian correct manner*/

 A.b8[0] = (u8) (count>>24);
 A.b8[1] = (u8) (count>>16);
 A.b8[2] = (u8) (count>>8);
 A.b8[3] = (u8) (count);

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)19Release 8

 A.b8[4] = (u8) (bearer<<3);
 A.b8[4] |= (u8) (dir<<2);

 /* Construct the modified key and then "kasumi" A */

 for(n=0; n<16; ++n)
 ModKey[n] = (u8)(key[n] ^ 0x55);
 KeySchedule(ModKey);

 Kasumi(A.b8); /* First encryption to create modifier */

 /* Final initialisation steps */

 blkcnt = 0;
 KeySchedule(key);

 /* Now run the block cipher */

 while(length > 0)
 {
 /* First we calculate the next 64-bits of keystream */

 /* XOR in A and BLKCNT to last value */

 temp.b32[0] ^= A.b32[0];
 temp.b32[1] ^= A.b32[1];
 temp.b8[7] ^= (u8) blkcnt;
 temp.b8[6] ^= (u8) (blkcnt>>8);

 /* KASUMI it to produce the next block of keystream */

 Kasumi(temp.b8);

 /* Set <n> to the number of bytes of input data *
 * we have to modify. (=8 if length <= 64) */

 if(length >= 64)
 n = 8;
 else
 n = (length+7)/8;

 /* XOR the keystream with the input data stream */

 for(i=0; i<n; ++i)
 *data++ ^= temp.b8[i];
 length -= 64; /* done another 64 bits */
 ++blkcnt; /* increment BLKCNT */
 }
}

/*---
 * e n d o f f 8 . c
 ---/

Function f9

/*---
 * F9 - Integrity Algorithm
 *---
 *
 * A sample implementation of f9, the 3GPP Integrity algorithm.
 *
 * This has been coded for clarity, not necessarily for efficiency.
 *
 * This will compile and run correctly on both Intel (little endian)
 * and Sparc (big endian) machines. (Compilers used supported 32-bit ints)
 *
 * Version 1.1 05 September 2000
 *
 ---/

#include "kasumi.h"
#include <stdio.h>

/*---
 * f9()
 * Given key, count, fresh, direction, data,
 * and message length, calculate the hash value

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)20Release 8

 ---/
u8 *f9(u8 *key, int count, int fresh, int dir, u8 *data, int length)
{
 REGISTER64 A; /* Holds the CBC chained data */
 REGISTER64 B; /* Holds the XOR of all KASUMI outputs */
 u8 FinalBit[8] = {0x80, 0x40, 0x20, 0x10, 8,4,2,1};
 u8 ModKey[16];
 static u8 mac_i[4]; /* static memory for the result */
 int i, n;

 /* Start by initialising the block cipher */

 KeySchedule(key);

 /* Next initialise the MAC chain. Make sure we *
 * have the data in the right byte order. *
 * <A> holds our chaining value... *
 * is the running XOR of all KASUMI o/ps */

 for(n=0; n<4; ++n)
 {
 A.b8[n] = (u8)(count>>(24-(n*8)));
 A.b8[n+4] = (u8)(fresh>>(24-(n*8)));
 }
 Kasumi(A.b8);
 B.b32[0] = A.b32[0];
 B.b32[1] = A.b32[1];

 /* Now run the blocks until we reach the last block */

 while(length >= 64)
 {
 for(n=0; n<8; ++n)
 A.b8[n] ^= *data++;
 Kasumi(A.b8);
 length -= 64;
 B.b32[0] ^= A.b32[0]; /* running XOR across */
 B.b32[1] ^= A.b32[1]; /* the block outputs */
 }

 /* Process whole bytes in the last block */

 n = 0;
 while(length >=8)
 {
 A.b8[n++] ^= *data++;
 length -= 8;
 }

 /* Now add the direction bit to the input bit stream *
 * If length (which holds the # of data bits in the *
 * last byte) is non-zero we add it in, otherwise *
 * it has to start a new byte. */

 if(length)
 {
 i = *data;
 if(dir)
 i |= FinalBit[length];
 }
 else
 i = dir ? 0x80 : 0;

 A.b8[n++] ^= (u8)i;

 /* Now add in the final '1' bit. The problem here *
 * is if the message length happens to be n*64-1. *
 * If so we need to process this block and then *
 * create a new input block of 0x8000000000000000. */

 if((length==7) && (n==8)) /* then we've filled the block */
 {
 Kasumi(A.b8);
 B.b32[0] ^= A.b32[0]; /* running XOR across */
 B.b32[1] ^= A.b32[1]; /* the block outputs */

 A.b8[0] ^= 0x80; /* toggle first bit */

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)21Release 8

 i = 0x80;
 n = 1;
 }
 else
 {
 if(length == 7) /* we finished off the last byte */
 A.b8[n] ^= 0x80; /* so start a new one..... */
 else
 A.b8[n-1] ^= FinalBit[length+1];
 }

 Kasumi(A.b8);
 B.b32[0] ^= A.b32[0]; /* running XOR across */
 B.b32[1] ^= A.b32[1]; /* the block outputs */

 /* Final step is to KASUMI what we have using the *
 * key XORd with 0xAAAA..... */

 for(n=0; n<16; ++n)
 ModKey[n] = (u8)*key++ ^ 0xAA;
 KeySchedule(ModKey);
 Kasumi(B.b8);

 /* We return the left-most 32-bits of the result */

 for(n=0; n<4; ++n)
 mac_i[n] = B.b8[n];

 return(mac_i);
}

/*---
 * e n d o f f 9 . c
 ---/

3GPP

3GPP TS 35.201 V8.0.0 (2008-12)22Release 8

Annex 3 (informative):
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
12-1999 - - - - ETSI SAGE Publication (restricted) - SAGE

v1.0
05-2000 - - - - ETSI SAGE update: Small change to sample code (16-bit

portability issue)
SAGE
v1.0

SAGE
v1.1

09-2000 - - - - ETSI SAGE update: Small change to sample f9 code (boundary
condition)

SAGE
v1.1

SAGE
v1.2

09-2000 SA_07 Approved by TSG SA and placed under change control SAGE
v1.2

3.1.0

07-2001 - - - - Word version received: Re-formatted into 3GPP TS format (MCC)
No technical change from version 3.1.0.

3.1.0 3.1.1

08-2001 - Addition of Mitsubishi IPR information in Foreword and correction of
reference titles. No technical change from version 3.1.0.

3.1.1 3.1.2

08-2001 - - - - Release 4 version created. 3.1.2 4.0.0
12-2001 SP-14 SP-010620 002 Correct the maximum input message length for f8 and f9 4.0.0 4.1.0
06-2002 SP-16 - - - Upgrade to Release 5 4.1.0 5.0.0
12-2004 SP-26 - - - Upgrade to Release 6 5.0.0 6.0.0
2005-09 SP-29 SP-050563 0003 - Correction of sample code 6.0.0 6.1.0
06-2007 SP-36 - - - Upgrade to Release 7 6.1.0 7.0.0
12-2008 SP-42 -- - - Upgrade to Release 8 7.0.0 8.0.0

	Foreword
	Introduction
	0 Scope
	NORMATIVE SECTION
	1 Outline of the normative part
	1.1 References

	2 Introductory information
	2.1 Introduction
	2.2 Notation
	2.2.1 Radix
	2.2.2 Conventions
	2.2.3 Bit/Byte ordering
	2.2.4 List of Symbols

	2.3 List of Variables

	3 Confidentiality algorithm f8
	3.1 Introduction
	3.2 Inputs and Outputs
	3.3 Components and Architecture
	3.4 Initialisation
	3.5 Keystream Generation
	3.6 Encryption/Decryption

	4 Integrity algorithm f9
	4.1 Introduction
	4.2 Inputs and Outputs
	4.3 Components and Architecture
	4.4 Initialisation
	4.5 Calculation

	INFORMATIVE SECTION
	Annex 1 (informative):Figures of the f8 and f9 Algorithms
	Annex 2 (informative):Simulation Program Listing
	Annex 3 (informative):Change history

